
Introduction
In the previous two sections of notes on Java you were introduced to the basics of classes and methods in the Java language. In the second set of notes special attention was given to access specifiers and method overloading. In this set of notes the emphasis is on some additional features of the access specifiers as well as a look at the nesting of classes. We’ll also take a quick look at recursion in Java.

The Static Modifier
Sometimes you will need to define a member of a class that will be used independently of any object in that class. Normally, a class member must be accessed through an object of its class, but it is possible to create a member than can be used by itself, without reference to a specific instance. To create such a member, its declaration is preceded with the keyword static. When a member is declared static, it can be accessed before any objects of its class are created, and without reference to any object. Both methods and variables can be declared as static. The most common example of a static member is main(). The main() method is declared static because it must be called by the operating system when your program begins and thus is called before any objects have been instantiated.

Outside of the class is which it is declared, a static member can be used simply by specifying the name of its class followed by the dot operator. No object needs to be created to access the static member. For example, if you want to assign the value of 8 to a static variable called count that is part of the Timer class, you simply use the code: Timer.count = 8; Notice that this format is similar to that used to access normal instance variables through an object, except in this case the class name is used. A static method can be called in exactly the same way – through the use of the dot operator on the name of the class.

Variables that are declared as static are essentially global variables. When an object is declared, no copy of a static variable is created. Instead, all instances of the class will share the same static variable. Shown below is an example that illustrates the differences between a static variable and an instance variable.

The output from the execution of this program is:

The next example illustrates a static method.

The output from the execution of this program is:

There are several restrictions that are placed on static methods:

1. Static methods can only call other static methods.

2. Static methods must access only static data. They cannot access instance variables.

3. There is no this reference available to static methods.

The following Java code fragment contains an error. Can you determine what the error is?

The error occurs in the return statement of the static method valueDivdenom in which a reference is made to the instance variable denom. Since the method valueDivdenom is a static method it is not allowed to access an instance variable.

Static Blocks
Sometimes a class will require some type of initialization before it is ready to create objects. For example, it might need to establish a connection to a remote site. It might also need to initialize certain static variables before any of its static methods are used. To handle these types of situations Java allows the programmer to declare a static block. A static block is executed when the class is first loaded. Thus, it is executed before the class can be used for any other purpose. The example below illustrates the use of a static block. Note carefully the order of the output as it clearly illustrates that the static block is executed before the first instruction in the main program is executed.

The output from the execution of this program is:

Nested and Inner Classes
Java allows for the definition of nested classes. A nested class is a class that is declared within another class. [As a historical note: the first version of Java did not include this capability, it was not added until version Java 1.1 was introduced.] A nested class is known only to its enclosing class. The scope of a nested class is limited to that of its outer class. A nested class has access to the members, including private members, of the class in which it is nested. However, the enclosing class does not have access to the members of the nested class. The graphic below illustrates these principles.

There are two general types of nested classes: those that are preceded by the static modifier and those that are not. We will only be concerned with the non-static type. The non-static nested class is also called an inner class. An inner class has access to all the variables and methods of its enclosing class (also called the outer class) and may refer to them directly in the same way that other non-static members of the outer class do. Sometimes an inner class is used to provide a set of services that is used only by its enclosing class. The example below illustrates this type of situation.

The output from the execution of this program is:

In the above example, the inner class named Inner computes various values from the array of numbers called nums, which is a member of the outer class named Outer. Since the nested class has access to the members of its enclosing class, it is perfectly acceptable for Inner to access the nums array directly. However, the reverse is not true. It would not be possible, for example, for Analyze() to invoke the min() method directly, without creating an Inner object.

Recursion in Java
In common with most modern programming languages, in Java a method can call itself. This process is called recursion and a method that calls itself is called a recursive method. The key component of a recursive method is a statement that executes a call to itself. In the lecture notes we examined recusion with several examples, one of which was the age old standard of computing a factorial. Shown below is a complete recursive Java program to compute factorials.

The output from the execution of this program is:

Be sure that you understand how the recursive calls operate and that you can trace the actions of this program in producing the output shown above.

When a method calls itself, new local variables and parameters are allocated storage on the run-time stack, and the method’s code is executed with these new variables from its first line of code. A recursive call does not make a new copy of the method, only the arguments are new with each recursive call. As each recursive call returns (via the return statement), the old local variables and parameters that were valid at the time of the call (the one that just ended) are removed from the stack, and execution resumes at the point of the call inside the method. Recursive methods can be thought of as “telescoping” out and back.

Recursive versions of many algorithms have the potential of executing more slowly than the iterative equivalent due to the additional overhead of the method calls. Too many recursive calls to a method might cause the run-time stack to overflow since storage for the local variables and parameters is allocated from the run-time stack. If this should occur in the Java environment the run-time system will throw and exception. Under normal circumstances (i.e., properly written recursive routines) this should not be a problem on most machines.

COP 3503 – Computer Science II – Java Notes #3

More Details on Specifiers and an Introduction to Recursion in Java

//Program to illustrate the differences in static variables and instance variables

class StaticDemo {

 int x; //this is a normal instance variable

 static int y; //this is a static variable

}

class SVDemo {

 public static void main(String args[]) {

 StaticDemo obj1 = new StaticDemo();

 StaticDemo obj2 = new StaticDemo();

 //each object has its own copy of an instance variable – in this case the variable x

 obj1.x = 2;

 obj2.x = 4;

 System.out.println(“obj1.x and obj2.x are independent – they are instance variables”);

 System.out.println(“obj1.x is: “ + obj1.x +” obj2x is:” + obj2.x);

 //each object shares one copy of a static variable – in this case the variable y

 System.out.println(“The static variable y is shared by obj1 and obj2”);

 obj1.y = 12;

 System.out.println(“obj1.y is: “ + obj1.y +” obj2y is:” + obj2.y);

 //the static variable y can be access through its class name

 StaticDemo.y = 16;

 System.out.println(“StaticDemo.y is: “StaticDemo.y + “obj1.y is: “ + obj1.y +

”\nobj2y is:” + obj2.y);

 }//end main

}\\end SVDemo

obj1.x and obj2.x are independent – they are instance variables

obj1.x is: 2 obj2.x is: 4

The static variable y is shared by obj1 and obj2

obj1.y is: 12 obj2.y is: 12

StaticDemo.y is: 16 obj1.y is: 16 obj2.y is: 16

//Program to illustrate a static method (other than the main method)

class StaticMethod {

 static int value = 1024; //this is a static variable

 //a static method

 static int valueDivby2() {

 return value/2;

 }

}//end StaticMethod

class StaticDemo {

 public static void main (String args[]) {

//continued on the next page

 System.out.println(“value is: “ + StaticMethod.value);

 System.out.println(“StaticMethod.valueDivby2() is: “ + StaticMethod.valueDivby2());

 StaticMethod.value = 4;

 System.out.println(“value is: “ + StaticMethod.value);

 System.out.println(“StaticMethod.valueDivby2() is: “ + StaticMethod.valueDivby2());

 }//end main

}//end StaticDemo

value is 1024

StaticMethod.valueDivby2 is: 512

value is 4

StaticMethod.valueDivby2 is: 2

class StaticError {

 int denom = 3; //a normal instance variable

 static int value = 1024; //a static variable

 static int valueDivdenom() {

 return value/denom;

 }

}//end StaticError

//Program to illustrate static blocks

class StaticBlock {

 static double rootof2;

 static double rootof3;

 //the following is a static block

 static {

 System.out.println(“Inside the static block”);

 rootof2 = Math.sqrt(2.0);

 rootof3 = Math.sqrt(3.0);

 } //end static block

 //constructor method

 StaticBlock(String msg) {

 System.out.println(msg);

 }

}//end StaticBlock

class StaticDemo {

 public static void main(String args[]) {

 StaticBlock obj = new StaticBlock(“Inside the Constructor”);

 System.out.println(“Square root of 2 is: “ + StaticBlock.rootof2);

 System.out.println(“Square root of 3 is: “ + StaticBlock.rootof3);

 }//end main

}//end StaticDemo

Inside the static block

Inside the Constructor

Square root of 2 is: 1.4142135623730951

Square root of 3 is: 1.7320508075688772

An enclosing class

This class cannot access members in the nested class.

A nested class

This class has access to all the members of its enclosing class

No class other than the enclosing class “knows” of the existence of this class. Its scope extends only to the enclosing class

//Program to illustrate an inner class

class Outer {

 int nums[];

 Outer(int n[]) {

 nums = n;

 }//end constructor

 	

 void Analyze() {

 Inner innerObj = new Inner();

 System.out.println(“Minimum value is: “ + innerObj.min());

 System.out.println(“Maximum value is: “ + innerObj.max());

 System.out.println(“Average value is: “ + innerObj.avg());

 }

//The inner class

class Inner {

 int min() {

 int m = nums[0];

 for (i=1; i < nums.length; i++)

 if(nums[i] < m) m = nums[i];

 return m;

 }//end min

 int max()

 int m = nums[0];

 for (i=1; i < nums.length; i++)

 if(nums[i] > m) m = nums[i];

 return m;

 }//end max

 int avg()

 int a = 0;

 for (i=0; i < nums.length; i++)

 a += nums[i];

 return a/nums.length;

 }//end avg

 }//end Inner

}//end Outer

class NestedClassDemo {

 public static void main(String agrs[]) {

 int x[] = {3, 2, 1, 5, 6, 9, 7, 8};

 Outer outerobject = new Outer(x);

 outerobject.Analyze();

 }//end main

}\\end NestedClassDemo

Minimum value is: 1

Maximum value is: 9

Average value is: 5

//Program to illustrate recursion in Java by computing factorials recursively

class Factorial {

 //a recursive method

 int fact(int n) {

 int result;

 if (n ==1) return 1;

 result = fact(n-1) * n; //this is the recursive call to method fact

 return result;

 }//end fact

class Recursion {

 public static void main(String args[]) {

 Factorial fact_n = new Factorial();

 System.out.println(“Factorial 3 is: “ + fact_n.fact(3));

 System.out.println(“Factorial 4 is: “ + fact_n.fact(4));

 System.out.println(“Factorial 5 is: “ + fact_n.fact(5));

 System.out.println(“Factorial 6 is: “ + fact_n.fact(6));

 }//end main

}//end Recursion

Factorial 3 is: 6

Factorial 4 is: 24

Factorial 5 is: 120

Factorial 6 is: 720

COP 3503 – Java Notes #3 - 1

