
Introduction
In the last set of Java notes you were introduced to the basics of classes and methods in the Java language. In this set of notes we will take a closer look at some of the details for controlling access to class members.

The class provides two major benefits in support of encapsulation: (1) it links the data with the code that manipulates that data and (2) it provides the means through which access to the members of the class can be controlled (this is the most interesting aspect from our point of view and it is what we will focus on in the first part of this week’s lab).

There are basically two different types of class members in Java: (1) private members and (2) public members. [Note: actually Java is a bit more complicated than this, but for now let’s assume that there are only two types of classes.] A public member can be accessed without restriction by code which is defined outside of that member’s class. If you look back at last week’s lab notes you will see that this was the only type of class member that we used in any of the examples (this was implicit in our examples because the default in Java is for a member to be public). A private member can be accessed only by other methods which are defined by its class. It is through the use of private members that access is controlled in support of encapsulation.

As we have mentioned in class, the restriction of access to a class’s members, is an important aspect of OOP because it helps to prevent the misuse of an object either maliciously or inadvertently. By allowing access to private data only through a well-defined set of methods, the assignment of improper values to that data can be prevented. It is not possible for code outside of the class to set the value of a private member directly. You, as the programmer/developer control precisely how and when the data within an object is used. When implemented properly, the class creates a “black box” that can be utilized to accomplish the task for which it was intended, but whose inner workings are not open to examination or tampering.

Access Specifiers
In Java, member access control is accomplished through the use of the access specifiers: public and private. [Note: there is actually a third one: protected, but will ignore this one for now as it only applies when inheritance is involved.] If no access specifier is explicitly listed, then the default specifier of public is utilized for a class member. An access specifier precedes the rest of a member’s type specification. Several examples below will illustrate the syntax of the access specifiers.

Some access specifier examples

Public Access Specifier

When a member of a class is modified by the public specifier, that member can be accessed by any other code in your program, including methods defined inside of other classes. [Another note: this default setting and the public specifier are the same unless packages are involved, then things get a little bit different. We won’t look at packages for a while so any code in your program can access a public member. When packages are used to break down your code into smaller groupings the default setting and the public setting will be slightly different in terms of what methods can “see” a public or default member.]

Private Access Specifier
When a member of a class is modified by the private specifier, that member can be access only by other members of its class. Methods in other classes cannot access a private member of another class.

The following example will clarify the differences and usage of the access specifiers for class members.

Example illustrating public/private specifiers

As an exercise, try removing the comment symbol from the front of the line: an_object.alpha = 10; and see what happens when you attempt to compile this program. [Hint: it won’t compile because of an access violation.]

The above example, while illustrating the access specifiers, is not very practical. The following example is much more practical and is something that you might want to incorporate in programs that you write in the future. When using an array in a program it is possible through error or miscalculation to attempt to access an array location which is not available. For example, if we have an array of 10 locations called A, then the reference A[15] is an out of bounds reference which will result in a run-time error that will terminate your program. Rather than allow the run-time error to occur and terminate the program, we will instead write a class in which the array is encapsulated as a private member of the class and thus access to it can be controlled and thus we can “catch” the error when an attempt is made to access an out of bounds location and we can then cause the program to terminate gracefully instead of crashing.

The results of executing the program FailEasyArrayDemo.java

Passing Objects to Methods
So far, our examples have passed only primitive type parameters to methods. It is however, quite common to pass an object to a method. To better understand how objects are passed to methods you need to be clear about the two basic techniques for passing arguments into subroutines.

The first technique is called pass-by-value. In this technique a copy of the value of a argument is passed into the formal parameter of the subroutine. [Recall that the formal parameter is the variable which is local to the subroutine and the argument is the variable which is being sent to the subroutine.] Any change made to the parameter in the subroutine will have no effect on the argument passed to the subroutine.

The second technique is called pass-by-reference. In this technique a reference to the argument is passed into the formal parameter of the subroutine. Inside the subroutine, it is this reference which is used to access the actual argument specified in the call. Thus, any change made to the parameter by the subroutine will be reflected back through to the argument since the parameter and the argument are one and the same.

Java uses both techniques. Whenever a simple type (i.e., int, double, etc.) is passed to a method, the pass-by-value technique is used. Thus, what happens to the parameter that receives the argument has no effect outside of that method. The following example illustrates this type of parameter passing.

The output from the execution of this program is:

When you pass an object to a method, the situation changes dramatically because objects are passed by reference. Also remember that whenever you create a variable of a class type, you are creating a reference to an object. When you pass this reference to the object to a method, the parameter that receives it will refer to the same object as that referred to by the argument. Changes to the object that occur inside the method will affect the object that is used as an argument. The following program illustrates the pass-by-reference technique.

The output from the execution of this program is:

Be sure that you understand the reasons why these two program produce the output that they do.

Returning Objects From Methods
A method can return any type of data, including class types. In the example shown below a string is returned by the class ErrorMsg.

The output from the execution of this program is:

While the above example may be useful in certain situations, it is far more common to return objects from the classes created in your code. Using the same example of returning error messages, the following program creates two error classes. The first class called Err encapsulates an error message and a severity code. The second class is called ErrorInfo and it defines a method called getErrorInfo(), which returns an Err object.

The output from the execution of this program is:

Method Overloading
Recall from our early lectures in the course our discussion of polymorphism (see Day 2 notes). Method overloading is one of the ways in which Java implements the concept of polymorphism. In Java, two or more methods within the same class can share the same name, as long as their parameter declarations are different. Whenever this occurs, the methods are said to be overloaded. In general, to overload a method, you simply declare different versions of the method differing primarily in the number and/or type of the parameters required by each of the methods. It is not sufficient for two methods to differ only in their return types as return types alone do not provide enough information for the compiler to decide which method is to be used at the time of a call. It is certainly possible for overloaded methods to differ in their return types, it just isn’t sufficient to determine which is the correct method to execute. Whenever an overloaded method is called, the version of the method whose parameters match the arguments is the one which is executed. The program below illustrates the overloading of methods.

The output from the execution of this program is:

As you can now see, polymorphism is supported through method overloading because it is one way in which the “one interface, multiple methods” paradigm can be effected. Languages that do not support method (function) overloading require that you give each version of the code a different name and call the appropriate function when the call is made. For example, in the C language the abs() function returns the absolute value of an integer and labs() returns the absolute value for long integers and fabs() returns the absolute value of a floating point number. C does not support function overloading.

Overloading Constructors
Recall that a constructor is simply a special case of a method. Since methods in Java can be overloaded it would seem reasonable to expect that constructor methods can also be overloaded; and you would be correct. Just like regular methods, constructors can be overloaded. Overloading a constructor allows you to construct objects in a variety of different ways. Overloading the constructor provides the user of the class flexibility in the way that the objects are built. Consider the following example in which the constructor of the class is overloaded in four ways, each constructing an object differently.

The output from the execution of this program is:

One of the most common reasons to overload a constructor is to allow one object to instantiate (initialize) another object. Consider the following example in which the Summation class computes the summation of a given number of integer values assumed to start at 1. [Note: one of the reasons to allow an object to construct another object is efficiency as the case below will illustrate. It is not necessary to recompute the summation when s2 is constructed. Even when efficiency is not the primary consideration, it is still useful to provide a constructor that makes a copy of an object.]

The output from the execution of this program is:

COP 3503 – Computer Science II – Java Notes #2

More Details on Classes and Methods

public int number_of_sides;

private double top_speed;

private Boolean isError(byte status) {

…

}

/* A program that demonstrates public/private access specifiers

 Name this file: AccessDemo.java

*/

class myClass {

 private int alpha; // a private class member

 public int beta; // a public class member

 int gamma; // a default class member – like public in this example

 //methods to access alpha. It is legal for a member of a class to access a private

 //member of the same class.

 void setAlpha(int a) {

 alpha = a;	//this is a mutator method

 }//end setAlpha

 void getAlpha() {

 return alpha; //this is an accessor method

 }//end getAlpha

}//end myClass

//This class simply uses myClass.

class AccessDemo {

 public static void main (String args[]) {

 myClass an_object = new myClass();

 //access to alpha is allowed only through its accessor methods

 an_object.setAlpha(-50);

 System.out.println(“an_object.alpha is currently: “ + an_object.getAlpha());

 //it is an error to access alpha as shown in the next statement

 //an_object.alpha = 10;

 //this is WRONG because alpha is a private member of another class

 //the next two lines of code are ok because beta and gamma are public members

 an_object.beta = 40;

 an_object.gamma = 20;

 }//end main

}//end class AccessDemo

/* A program that implements a “user-friendly”array to prevent out-of-bounds run-time errors

 Name this file: FailEasyArrayDemo.java

*/

class FEArray {

 private int a[]; // reference to an array named a

 private int error_value; // the value returned if get() fails

 public int length; // a public member

 //constructor to build an array given a size and the value to return if get() fails

 public FEArray(int size, int errv) {

 a = new int[size];

 error_value = errv;

 length = size;

 }//end constructor

 //accessor method to return the value at a specified index in the array

 public int get(int index) {

 if(ok(index)) return a[index];

 return error_value;

 }//end get

 //mutator method to place a value in the array at a specified index. Return false if fail

 public Boolean put(int index, int val) {

 if(ok(index)) {

 a[index] = val;

 return true;

 }

 return false;

 }//end put

 //method to return true if index is in range and false if out-of-bounds

 private Boolean ok(int index) {

 if(index >= 0 & index < length) return true;

 return false;

 }//end ok

}//end FEArray

//continued on the next page

//This class simply demonstrates the fail easy array implementation.

class FailEasyArrayDemo {

 public static void main (String args[]) {

 FEArray one = new FEArray(5, -1); //build an array called “one”

 int x;

 // show how the errors are detected and handled

 System.out.println(“Fail Easily Array Demo”);

 for (int i = 0; i < one.length * 2); i++)

 one.put(i, i*10); //access to the array must be through its accessor methods

 for(int i = 0; i < one.length * 2); i++) {

 x = one.get(i);

 if (x != -1) System.out.print(x + “ “);

 }

 System.out.println(“ “);

 //Now handle the errors gracefully

 System.out.println(“\nFailure with error reports.”);

 for(int i = 0; i < (one.length * 2); i++)

 if(!one.put(i, i*10))

 System.out.println(“Index “ + i + “out-of-bounds”);

 for(int i = 0; i < (one.length * 2); i++) {

 x = one.get(i);

 if(x != -1) System.out.print(x, “ “);

 else

	 System.out.println(“Index “+ i + “is out-of-bounds”);

 }

 }//end main

}//end class FailEasyArrayDemo

Fail Easy Array Demo

0 10 20 30 40

Failure with error reports.

Index 5 out-of-bounds

Index 6 is out-of-bounds

Index 7 is out-of-bounds

Index 8 is out-of-bounds

Index 9 is out-of-bounds

0 10 20 30 40 Index 5 is out-of-bounds

Index 6 is out-of-bounds

Index 7 is out-of-bounds

Index 8 is out-of-bounds

Index 9 is out-of-bounds

//Pass-By-Value

//The method in this class will not reflect changes to the arguments passed to it in a call.

class Tester {

 void noChanges(int i, int j) {

 i = i + j;

 j = -j;

 }//end noChanges

}//end Tester

class CallByValue {

 public static void main(String args[]) {

 Tester obj = new Tester();

 int a = 45; b = 15;

 System.out.println(“a and b before the call: “ + a + “ “ + b);

 obj.noChanges(a, b);

 System.out.println(“a and b after the call:” + a + “ “ + b);

 }//end main

}//end CallByValue

a and b before the call: 45 15

a and b after the call: 45 15

//Pass-By-Reference

//The method in this class will reflect changes to the arguments passed to it in a call.

class Tester {

 int a, b;

 Tester(int i, int j) {

 a = i;

 b = j;

 }//end constructor

 //pass an object. obj.a and obj.b in the passed object will be changed

 void Changes(Tester obj) {

 obj.a = obj.a + obj.b;

 obj.b = -obj.b;

 }//end Changes

}//end Tester

class CallByReference {

 public static void main(String args[]) {

 Tester obj = new Tester(45, 15);

 System.out.println(“obj.a and obj.b before the call: “ + obj.a + “ “ + obj.b);

 obj.Changes(obj);

 System.out.println(“obj.a and obj.b after the call:” + obj.a + “ “ + obj.b);

 }//end main

}//end CallByReference

Index Out-of-Bounds Error

Invalid Error Code

//A method that returns a Sting object

class ErrorMsg {

 String msgs[] = {

 “Output Error”, “Input Error”, “Disk Full Error”, “Index Out-of-Bounds Error”

 };

 //return the appropriate error message

 String getErrorMsg(int i) {

 if(i >= 0 & i < msgs.length)

 return msgs[i];

 else

 return “Invalid Error Code”;

 }//end getErrorMsg

}//end ErrorMsg

class Errors {

 public static void main(String args[]) {

 ErrorMsg error = new ErrorMsg();

 System.out.println(error.getErrorMsg(3));

 System.out.println(error.getErrorMsg(10));

 }//end main

}//end Errors

//Demonstration of the return of a programmer-defined object

class Err {

 String msg; //an error message

 int severity; //code indicating how severe the error is – programmer defined of course

 Err(String m, int n) {

 msg = m;

 severity = n;

 }//end constructor

}// end Err

class ErrorInfo {

 String msgs[] = “Input Error”, “Output Error”, “Disk Full Error”, “Index Out-of-Bounds”

 };

 int degree[] = { 3, 3, 2, 4};

 Err getErrorInfo(int j) {

 if(j >= 0 & j < msgs.length)

 return new Err(msgs[j], degree[j]);

 else

 return new Err(“Invalid Error Code”, 0);

 }//end getErrorInfo

}//end ErrorInfo

class Errors {

 public static void main(String args[]) {

 ErrorInfo err = new ErrorInfo();

 Err e;

 e = err.getErrorInfo(2);

 System.out.println(e.msg + “severity is: “ + e.severity);

 E = err.getErrorInfor(10);

 System.out.println(e.msg + “severity is: “ + e.severity);

 }//end main

}//end Errors

Disk Full Error severity is: 2

Invalid Error Code severity is: 0

//Program to demonstrate method overloading

class Overload {

 //first overloaded version – no parameters

 void ovlDemo() {

 System.out.println(“This method has no parameters”):

 }

 //second overloaded version – one parameter

 void ovlDemo(int a) {

 System.out.println(“A one parameter version: “ + a);

 }

 //third overloaded version – two integer parameters

 int ovlDemo(int a, int b) {

 System.out.println(A two integer parameter version: “ + a + “ “ + b);

 return a + b;

 }

 //fourth overloaded version – two double parameters

 double ovlDemo (double a, double b) {

 System.out.println(A two double parameter version: “ + a + “ “ + b);

 return a + b;

 }

}//end Overload

class OverloadDemo {

 public static void main (String args[]) {

 Overload obj = new Overload();

 int result_int;

 double result_dbl;

 // call all versions of ovlDemo

 obj.ovlDemo();

 System.out.println();

 obj.ovlDemo(3);

 System.out.println();

 Result_int = obj.ovlDemo(4, 5);

 System.out.println(“The result of obj.ovlDemo(4, 5) is: “ + result_int);

 System.out.println();

 Result_dbl = obj.ovlDemo(1.1, 2.32);

 System.out.println(“The result of obj.ovlDemo(1.1, 2.32) is: “ + result_dbl);

 }//end main

}//end OverloadDemo

This method has no parameters

A one parameter version: 3

A two integer parameter version: 4 5

The result of obj.ovlDemo(4,5) is: 9

A two double parameter version: 1.1 2.32

The result of obj.ovlDemo(1.1, 2.32) is: 3.42

//Program to demonstrate an overloaded constructor

class MyClass {

 int x;

 //no parameters to the constructor version

 MyClass() {

 System.out.println(“Currently inside MyClass(). “);

 x = 0;

 }

 MyClass(int n) {

 System.out.println(“Currently inside MyClass(int).”);

//continued on next page

 x = n;

 }

 MyClass(double d) {

 System.out.println(“Currently inside MyClass(double).”);

 x = (int) d;

 }

 MyClass(int m, int n) {

 System.out.println(“Currently inside MyClass(int, int).”);

 x = m * n;

 }

}//end MyClass

class OverloadedConstructorDemo {

 public static void main (String args[]) {

 MyClass var1 = new MyClass();

 MyClass var2 = new MyClass(88);

 MyClass var3 = new MyClass(17.23);

 MyClass var 4 = new MyClass(2, 4);

 System.out.println(“var1.x is: “ + var1.x);

 System.out.println(“var2.x is: “ + var2.x);

 System.out.println(“var3.x is: “ + var3.x);

 System.out.println(“var4.x is: “ + var4.x);

 }//end main

}//end OverloadConstructorDemo

Currently inside MyClass().

Currently inside MyClass(int).

Currently inside MyClass(double).

Currently inside MyClass(int, int).

var1.x is: 0

var2.x is: 88

var3.x is: 17

var4.x is: 8

//Overloaded constructor to allow initialization of one object by another object

class Summation {

 int sum;

 //construct a summation from an integer.

 Summation(int number) {

 sum = 0;

 for(int n = 1; n <= number; n++)

 sum += n;

 }//end constructor

 //construct a summation from another summation (object)

 Summation(Summation obj) {

 Sum = obj.sum;

 }//end constructor

}//end Summation

class SummationDemo {

 public static void main(String args[]) {

	Summation s1 = new Summation(5);

 	Summation s2 = new Summation(s1);

 System.out.println(“s1.sum is: “ + s1.sum);

	System.out.println(“s2.sum is: “ + s2.sum);

 }//end main

}//end SummationDemo

	

s1.sum is: 15

s2.sum is: 15

COP 3503 – Java Notes #2 - 12

