
Introduction

Whenever you begin to learn a new programming language the first program that you should write in the new language is the classic “Hello world” program. This program is shown below. Enter this program and execute it before you attempt to do any other Java program. This very simple program will allow you to use the text editor to enter the program, compile and execute your program.

The Class
The class is the foundation of the Java language. The class defines the nature of an object. As such, the class forms the basis for object-oriented programming in Java. Within a class are defined data and code that acts upon that data. The code is contained in methods. Classes, objects, and methods are fundamental to Java.

All Java program activity occurs within a class. A class is a template (prototype, blueprint, etc.) that defines the form of an object. It specifies both the data and the code that will operate on that data. Java uses a class specification to construct objects. Objects are instances of a class. Thus, a class is essentially a set of plans that specify how to build an object. The process of creating or building an instance of a class is called instantiation. An object has no physical representation in memory until it has been instantiated. Just like an architect’s blueprint for a house, until a house is built according to the blueprint, it doesn’t exist. The methods and variables that constitute a class are called members of the class. The data members are also referred to as instance variables. When you define a class, you are declaring its exact form and nature. You do this by specifying the instance variables that it contains and the methods that operate on those instance variables. A class in Java is created using the following class definition form:

Class declaration in Java

Although there are no syntactic rules that enforce it, a well-designed class should define one and only one logical entity. For example, a class which stores student names and telephone numbers would not normally also store the average amount of rainfall in Orlando. A well-designed class groups logically connected information. Putting unrelated information into the same class will very quickly destructure your program.

Notice that the general form of a class does not specify a main() method. A main() method is required only if that class is the starting point for your program. (Also, applets don’t require a main().)

To illustrate the concept of a class, we’ll develop a class the encapsulates information about vehicles, such as cars, vans, and trucks. We’ll call this class Vehicles and to begin with we’ll store three attributes for a vehicle (later we’ll probably add some additional attributes): the number of passengers that it can carry, the size of its fuel tank, and its average fuel consumption (miles/gallon).

Let’s start simple and define our class and the three instance variables we described above.

Notice that the class Vehicle does not contain any methods. As we have currently defined it; it is a data only class (we’ll expand it shortly).

A class definition creates a new data type. In this case the new data type is called Vehicle. This is the name you will use to create objects of type Vehicle. Remember that the class declaration is only a type description and we have not yet instantiated an actual object of the class.

To instantiate a Vehicle object, we need to use the new statement such as:

Vehicle mercedes = new Vehicle(); //create a Vehicle object called mercedes
Each time you create an instance of a class, you are creating an object that contains its own copy of each instance variable defined by the class. Thus, every Vehicle object will have its own copies of the instance variables passengers, fuelcapacity, and mpg. [We’ll take a closer look at the new statement shortly.] To access these variables, you use the dot operator (.). The dot operator links the name of an object with the name of a member. The general form of the dot operator is:

object.member
Thus, the object is specified on the left and the member is placed on the right. To assign a fuelcapacity of 24 gallons to our mercedes, use the following statement:

mercedes.fuelcapacity = 24;
In general, the dot operator is used to access both instance variables and methods.

Now let’s add some features to make a more useful program that uses our Vehicle class. To do this will add another class that uses the Vehicle class to demonstrate features of Vehicles.

Example 1

Notice that since the main() method is in the class VehicleDemo and not in the class Vehicle that you call the file which stores this code VehicleDemo.java and not Vehicle.java. When you compile this program you will find that two .class files have been created by the compiler, one for Vehicle and one for VehicleDemo. The Java compiler automatically puts each class into its own .class file. It is not necessary that both Vehicle and VehicleDemo be in the same source file. You could put each class in its own file, called Vehicle.java and VehicleDemo.java, respectively.

To run this program, you must execute VehicleDemo.class. If you do this you should see the following output:

Ferrari can carry 2 with a range of 100 miles
The new Statement

Consider the new statement from the last example program in which the ferrari was created. This declaration performs two functions. First, it declares a variable called ferrari of the class type Vehicle. This variable does not define an object. Instead, it is simply a variable that can refer to an object of type Vehicle. Second, the declaration creates a physical copy of the object and assigns to ferrari a reference to that object. This is done by using the new operator. The new operator dynamically allocates memory for an object and returns a reference to it. This reference is basically the address in memory of the object allocated by new. This reference is then stored in the variable ferrari. In Java, all class objects are dynamically allocated. To illustrate this further, consider our original statement rewritten as:

The first line declares ferrari as a reference to an object of type Vehicle. Thus, ferrari is a variable that can refer to an object, but it is not an object itself. At this point, ferrari contains the value null, which means that it does not refer to an object. The next line creates a new Vehicle object and assigns a reference to it to ferrari. Now, ferrari is linked to an object. These two operations are typically performed simultaneously and written together as we did in the program example.

Reference Variables and Assignments

In an assignment operation, object reference variables act differently than do variables of a simple type, such as an integer. When you assign one simple type to another, the situation is quite simple: the variable on the left hand side of the assignment operator receives a copy of the value of the variable on the right hand side of the assignment operator. When you assign an object reference variable to another you are potentially changing the object that the reference variable refers to. The effect of this difference can cause some counterintuitive results, unless you are aware of what is happening. Consider the following code fragment:

At first glance, you might think that ferrari and mercedes refer to different objects, but this is not the case, Instead, ferrari and mercedes will both refer to the same object.

ferrari

mercedes

Note that after making such an assignment to the reference variables that an assignment to any of the instance variables through either reference variable will also assign the instance variable for the other reference variable. The example below illustrates this property.

Although ferrari and mercedes refer to the same object, they are not linked in any other fashion. Therefore, a subsequent assignment to mercedes will potentially change the object which it references as shown in the next code fragment.

Example 2

Methods
As we mentioned earlier, a class can contain instance variables and the methods which operate on those instance variables. The Vehicle class that we have defined so far, contains only data and no methods. Although a data only class is perfectly valid, most useful classes will contain methods. Methods are subroutines that manipulate the data defined by the class and in many cases will provide access to that data. In most cases, other parts of your program will interact with a class through its methods.

A method is simply one or more statements. Following good programming practices a method should perform only one task. Each method will have a name, and it is this name which is used to call the method. Shown below is the general form for a method:

Method declaration in Java

Where return-type is the type of the data returned by the method. This can be any valid type, including class types that you have created. If the method does not return a value, its return type must be void. The parameter list is a sequence of type and identifier pairs separated by commas. Parameters are basically variables that receive the value of the arguments passed to the method when it is called (invoked). If the method has no parameters, the parameter list will be empty.

In Example 1 above, we used the main method to calculate the range that a vehicle could cover on a tank of fuel. While this worked ok, it is not the best way to handle this calculation because this is something that should be handled within the Vehicle class itself. The reason this is so is easy to understand. The range of a vehicle is dependent upon the capacity of its fuel tank and the rate at which is consumes fuel. These are both quantities (attributes of a vehicle) that we have encapsulated in the Vehicle class. Therefore, this calculation should also be performed within the class where these instance variables reside. Let’s rewrite our program to incorporate a method to perform this calculation inside the Vehicle class.

Looking at Example 3, notice in the range() method of the Vehicle class that the dot notation is not used since the instance variables are contained within the same class as the method which is using them. Also notice that since each object of type Vehicle has its own copy of fuelcapacity and mpg, when the range() method is called, the range computation uses the calling object’s copies of these instance variables. So the statement ferrari.range() invokes the method range() on the object referenced by ferrari.
When a method is called, program control is transferred to the method. When the method terminates, control is transferred back to the caller, and execution resumes with the line of code immediately after (immediately logically after) the call.

Example 3

When the program of Example 3 is executed the output will be:

Returning From a Method
In general there are two conditions that cause a method to return:

1. The method executes its last statement and the closing brace is encountered.

2. When a return statement is executed.

There are two forms of a return statement, one used by void methods which do not return values, and a second for use by methods which return values to the caller.

Return statement in Java

Once again, using our Vehicle class as an example, we can redefine the class so that instead of calculating and printing the range of a vehicle, we will calculate the range and return this value to the caller so that the caller can use the value as they see fit. In Example 4, shown on page10, we will again expand our Vehicle class so that the range() method will return the range value which is calculated rather than simply printing that value.

Notice that the range() method now indicates that it returns a value which is of the integer type, denoted by the int preceding the name of the method.

Using Parameters
It is possible (and used very often) to pass one or more values to a method when the method is invoked. A value passed to a method is called an argument. Inside the method, the variable that receives the argument is called a parameter. Parameters are declared inside the parentheses that follow the method’s name. The parameter declaration syntax is the same as that used for variables. A parameter is within the scope of its method, and apart from its special task of receiving an argument, it acts like any other local variable. In the following example, we extend our Vehicle class to contain a parameterized fuelrequired() method which will calculate how much fuel a given vehicle will need to cover a particular distance. This is shown in Example 5 on page 11.

Example 4

When the program of Example 4 is executed the output will be:

Example 4

When executed, Example 4 will produce the following output:

Example 5

The output from Example 5 when executed will be:

Constructors
In all of the examples that we have seen so far, all of the instance variables of each Vehicle object that we have created have been set manually with a sequence of assignment statements. That is, they have been “hard-coded” into the programs. This, of course, will never be done in a professionally written program. A much better way to do accomplish this task is through a special method called a constructor. A constructor initializes an object when it is created. It has the same name as the class in which it resides. Constructors are syntactically the same as any other method with the exception that they do not have an explicit return type. Typically, a constructor is used to initialize the instance variables defined by the class or to perform any other “start-up” procedures that might be required to create a fully-formed object of the class. All classes have constructors, whether you define one or not, because Java automatically creates a default constructor that initializes all member variables to zero! However, if you define a constructor, the default constructor is no longer used. It is a good idea to always define at least one constructor for every class that you declare.

As with normal methods, constructors may be parameterized. Parameters are defined for a constructor in exactly the same way that they are defined for normal methods. As we will see later, it is the parameter lists that will allow us to construct multiple constructors for a single class, a technique known as method overloading.

As our final example for this set of notes, we will add a parameterized constructor to our Vehicle class which will allow us to initialize the instance variables for the object we are creating at the time the object is instantiated. This final example is shown on the next (and last) page.

COP 3503 – Computer Science II – Java Notes #1

Introduction To Java

/*

	This is a simple Java program called the “Hello World” program.

	Name the text file in which you store this code: Example.java

*/

class Example {

//A Java program begins with a call to main().

	public static void main (String args[]) {

	 System.out.println(“Hello World!”);

	}// end main

}//end class Example

class classname {

	// declare instance variables

		type var1;

		type var2;

		// …

		type varN

	//declare methods

		type method1 (parameters) {

			//body of method1	

		}

		type method2 (parameters) {

		//body of method2

		}

		// …

		type methodN (parameter) {

			//body of method N

		}

}//end class

class Vehicle {

 int passengers; // number of passengers the vehicle can carry

 int fuelcapacity; // size of the fuel tank in gallons

 int mpg; // fuel consumption in miles/gallon

}

/* A program that uses the Vehicle class

 Name this file: VehicleDemo.java

*/

class Vehicle {

 int passengers; // number of passengers the vehicle can carry

 int fuelcapacity; // size of the fuel tank in gallons

 int mpg; // fuel consumption in miles/gallon

}

//This class simply declares an object of type Vehicle.

class VehicleDemo {

 public static void main (String args[]) {

 Vehicle ferrari = new Vehicle();

 int range;

 // assign values to the instance variables for the ferrari

 ferrari.passengers = 2;

 ferrari.fuelcapacity = 20;

 ferrari.mpg = 5;

 // compute the range assuming a full tank of fuel is loaded.

 range = ferrari.fuelcapacity * ferrari.mpg;

 System.out.println(“Ferrari can carry “ + ferrari.passengers + “with a range of ”

				+ range + “ miles”);

 }//end main

}//end class VehicleDemo

Vehicle ferrari; //declare a reference variable to an object

ferrari = new Vehicle(); //allocate a Vehicle object

Vehicle ferrari = new Vehicle();

Vehicle mercedes = ferrari;

object

mercedes,mpg = 20;

ferrari.mpg = 12;

System.out.println(“The Ferrari gets “ + ferrari.mpg + “ mpg”);

System.out.println(“The Mercedes gets “ + mercedes.mpg + “mpg”);

// Both of these print statements will print a mpg value of 12!

Vehicle ferrari = new Vehicle();

Vehicle mercedes = ferrari;

Vehicle bmw = new Vehicle();

mercedes = bmw;

// Now mercedes and bmw refer to the same object and ferrari refers

// to a different object.

ferrari.mpg = 12;

bmw.mpg = 15;

System.out.println(“The Ferrari gets “ + ferrari.mpg + “ mpg”);

System.out.println(“The Mercedes gets “ + mercedes.mpg + “mpg”);

// The first print statement will print a mpg value of 12.

// The second print statement prints a mpg value of 15.

return-type name (parameter-list) {

	//body of the method

} //end of method

/* A program that uses the Vehicle class extended to include a method

 Name this file: VehicleDemo2.java

*/

class Vehicle {

 int passengers; // number of passengers the vehicle can carry

 int fuelcapacity; // size of the fuel tank in gallons

 int mpg; // fuel consumption in miles/gallon

 //calculate the range of a vehicle.

 void range () {

 System.out.println(“Range is “ + fuelcapacity * mpg + “ miles”);

 }//end method range

}//end class Vehicle

//This class simply declares an object of type Vehicle and uses it.

class VehicleDemo2 {

 public static void main (String args[]) {

 Vehicle ferrari = new Vehicle();

 Vehicle mercedes = new Vehicle();

 // assign values to the instance variables for the ferrari

 ferrari.passengers = 2;

 ferrari.fuelcapacity = 20;

 ferrari.mpg = 5;

 // assign values ot the instance variables for the mercedes

 mercedes.passengers = 4;

 mercedes.fuelcapacity = 19;

 mercedes.mpg = 25;

 // compute the range assuming a full tank of fuel is loaded.

 System.out.print(“Ferrari can carry “ + ferrari.passengers + “.”);

 ferrari.range();

 System.out.print(“Mercedes can carry “ + mercedes.passengers + “.”);

 mercedes.range();

 }//end main

}//end class VehicleDemo2

Ferrari can carry 2. Range is 100 miles

Mercedes can carry 4. Range of 475 miles

return; //used by void methods

return value; //used by methods returning a value

/* A program that uses the Vehicle class extended to include a method which returns a value

 Name this file: VehicleDemo3.java

*/

class Vehicle {

 int passengers; // number of passengers the vehicle can carry

 int fuelcapacity; // size of the fuel tank in gallons

 int mpg; // fuel consumption in miles/gallon

 //calculate the range of a vehicle.

 int range () {

 return fuelcapacity * mpg;

 }//end method range

}//end class Vehicle

//This class simply declares an object of type Vehicle and uses it.

class VehicleDemo3 {

 public static void main (String args[]) {

 Vehicle ferrari = new Vehicle();

 Vehicle mercedes = new Vehicle();

 int ferrari_range, mercedes_range;

 // assign values to the instance variables for the ferrari

 ferrari.passengers = 2;

 ferrari.fuelcapacity = 20;

 ferrari.mpg = 5;

 // assign values ot the instance variables for the mercedes

 mercedes.passengers = 4;

 mercedes.fuelcapacity = 19;

 mercedes.mpg = 25;

 // compute the range assuming a full tank of fuel is loaded.

 ferrari_range = ferrari.range();

 mercedes_range = mercedes.range();

 System.out.print(“Ferrari can carry “ + ferrari.passengers + “with a range of “

 + ferrari_range + “ miles.”);

 System.out.print(“Mercedes can carry “ + mercedes.passengers” + “with a range

 Of “ + mercedes.range + “ miles”);

 }//end main

}//end class VehicleDemo3

Ferrari can carry 2 with a range of 100 miles

Mercedes can carry 4 with a range of 475 miles miles

/* A program that uses the Vehicle class extended to include a method which returns a value

 and a method which has a single parameter. Name this file: VehicleDemo4.java

*/

class Vehicle {

 int passengers; // number of passengers the vehicle can carry

 int fuelcapacity; // size of the fuel tank in gallons

 int mpg; // fuel consumption in miles/gallon

 //calculate the range of a vehicle.

 int range () {

 return fuelcapacity * mpg;

 }//end method range

 //calculate the fuel required for a given distance to be covered.

 double fuelrequired(int miles) {

 return (double) miles / mpg;

 }//end method fuelrequired

}//end class Vehicle

//This class simply declares an object of type Vehicle and uses it.

class VehicleDemo4 {

 public static void main (String args[]) {

 Vehicle ferrari = new Vehicle();

 Vehicle mercedes = new Vehicle();

 double gallons;

 int distance = 430;

 // assign values to the instance variables for the ferrari

 ferrari.passengers = 2;

 ferrari.fuelcapacity = 20;

 ferrari.mpg = 5;

 // assign values ot the instance variables for the mercedes

 mercedes.passengers = 4;

 mercedes.fuelcapacity = 19;

 mercedes.mpg = 25;

 gallons = ferrari.fuelrequired(distance);

 // compute the range assuming a full tank of fuel is loaded.

 System.out.println(“To go “ + distance + “ miles. The Ferrari needs” + gallons + “ gallons of

fuel”);

 gallons = Mercedes.fuelrequired(distance);

 System.out.println(“To go ” + distance + “ miles. The Mercedes needs” + gallons + “ gallons of

 fuel”);

 }//end main

}//end class VehicleDemo4

To go 430 miles. The Ferrari needs 86.0 gallons of fuel

To go 430 miles. The Mercedes needs 17.2 gallons of fuel

/* A program that uses the Vehicle class extended to include a method which returns a value

 and a method which has a single parameter. This final version also includes a parameterized

 constructor for the class. Name this file: VehicleFinalDemo.java

*/

class Vehicle {

 int passengers; // number of passengers the vehicle can carry

 int fuelcapacity; // size of the fuel tank in gallons

 int mpg; // fuel consumption in miles/gallon

 //constructor for the vehicle class

 Vehicle(int numpass, int fcap, int mileage) {

 passengers = numpass;

 fuelcapacity = fcap;

 mpg = mileage;

 }//end constructor

 //calculate the range of a vehicle.

 int range () {

 return fuelcapacity * mpg;

 }//end method range

 //calculate the fuel required for a given distance to be covered.

 double fuelrequired(int miles) {

 return (double) miles / mpg;

 }//end method fuelrequired

}//end class Vehicle

//This class simply declares an object of type Vehicle and uses it.

class VehicleFinalDemo {

 public static void main (String args[]) {

 Vehicle ferrari = new Vehicle(2, 20, 5);

 Vehicle mercedes = new Vehicle(4, 19, 25);

 double gallons;

 int distance = 430;

 gallons = ferrari.fuelrequired(distance);

 // compute the range assuming a full tank of fuel is loaded.

 System.out.println(“To go “ + distance + “ miles. The Ferrari needs” + gallons + “ gallons of

fuel”);

 gallons = Mercedes.fuelrequired(distance);

 System.out.println(“To go ” + distance + “ miles. The Mercedes needs” + gallons + “ gallons of

 fuel”);

 }//end main

}//end class VehicleDemo4

COP 3503 – Java Notes #1 - 1

