COP 3503H Fall 2011
Quiz # 1 Sample Questions
Name:____Sample Quiz______

1.
Consider an ADT, KeySortedCollection (KSC) defined by the following protocol (family of services)

void init() – initializes the KSC to an empty state
void put(Key k, Element x) – adds a new element x, with sort key k, to the KSC. Duplicates are allowed.

Element keyGet(Key k) – returns an element having sort key k, if one is in the KSC. Returns null on failure.

Element selection(int pos) – returns the element at the pos-th position, based on a low to high ordering by keys, from the KSC. Returns null if there are fewer than pos elements in the KSC.

This ADT may be used for a variety of purposes, including as the basis for printing a list of elements in ascending order, according to some key. Several abstract implementations (data models) seem appropriate candidates for representing such an ADT. Moreover, each such abstract implementation might need to be evaluated in terms of a specific data structure.

10
a.)
Fill in the order of complexities in terms of N, the number of elements being stored, of each of the last three services provided for the KSC ADT, given the following four approaches to implementation. In all cases, assume that individual keys can be compared in constant time and that you are concerned with expected, not worst case performance. You should not be surprised if one or more of these suggested approaches is a poor choice.

i.)
The state of the KSC is represented as a Hash Table (HT)
ii.)
The state of the KSC is represented by a Max Balanced Priority Ordered Tree (BPOT), ordered by keys.

iii.)
The state of the KSC is represented by an Unsorted List (UL).

iv.)
The state of the KSC is represented by a Sorted List (SL).

Assume a simple array data structure in iii and iv.

	
	HT
	BPOT
	UL
	SL

	put
	O(1)
	O(log2N)
	O(1)
	O(N)

	keyGet
	O(N/B)
	O(N)
	O(N)
	O(log2N)

	selection
	O(N+B)
	O(N) or (k log2N)
	O(N)
	O(1)

6
b.)
Compare UL to SL, specifying under what circumstances each is better than the other. Do the same for HT versus BPOT.

UL is much faster building up a list since inserts can just be placed at the end, rather than having to be placed in proper sort order. However, lookups, of both kinds, are significantly faster in SL. Thus, UL is probably better for a table whose content constantly change, whereas SL is better if lookups dominate inserts.

HT is the winner (for the above operations) if N/B is a small constant (e.g., 2). It also is faster for lots of inserts. However, BST is better for lots of lookups, provided the ratio N/B is larger than log2N.
6
2.
Analyzing the complexity of algorithms often requires that you solve a recurrence equation. For instance, an algorithm involving recursion might yield a time T(n), for n>1, defined recursively by

T(n) = 3 * T(n/2), with the boundary condition that T(1) = 1.

Assuming that n is a power of 2, show that T(n) is 3log2 n. You must use induction to prove that this equality holds for all n = 2k, where k is any positive whole number.
Hint: Inductively prove the statement S(k) : T(2k) = 3k, for all k≥0.

Basis:
Show S(0). By definition T(20) = T(1) = 1. But 1 = 30, and hence T(20) = 30. 

Inductive Hypothesis:
Assume S(k) is true for some k≥0. That is assume T(2k) = 3k.

Inductive Step:
Show S(k+1), given S(k). By definition T(2k+1) = 3  T(2k+1/2) = 3  T(2k) .
But, since T(2k) = 3k , by inductive hypothesis, then T(2k+1) = 3k+1 

3.

5
a.)
Apply the even-odd parallel algorithm presented in class for sorting the 6 elements in the following ring of 6 processors. Show the results of each of the up to 5 passes that it takes to complete this ascending (low to high) sort.

[image: image1.wmf]

4

3

0

5

2

1

Initial Contents

[image: image2.wmf]3

4

0

5

1

2

After Pass 1

[image: image3.wmf]2

0

4

1

5

3

After Pass 2

[image: image4.wmf]0

2

1

4

3

5

After Pass 3

[image: image5.wmf]0

1

2

3

4

5

After Pass 4

[image: image6.wmf]0

1

2

3

4

5

After Pass 5
1
b.)
Briefly state the limitations that we place on interprocessor communications.

Each processor is restricted to communicate with its immediate neighbors, only.
2
c.)
Explain why no algorithm can be created that has a faster order than O(N) under these restrictions.

No datum may move more than one processor right or left in any step. If the largest number started in processor 1, it will take at least N-1 steps to get to processor N.
3
d.)
What is the theoretical optimal order of execution of a parallel sort, using N processors? Justify your claim. Be explicit.

The theoretical optimum for a single processor solution is O(Nlog2N). Using k processors cannot improve performance by more than a factor of k. So, the theoretical optimal performance is O(Nlog2N / N)= O(log2N).
3
4.

a.)
Consider the List and Set data models. Assuming that we represent both lists and sets by linked lists, give the order of algorithms for Concatenating Ordered Lists and for Unioning Sets. You may assume that all lists and sets have N elements prior to the concatenation/union operations.

	
	Concatenate Ordered Lists
	Union Sorted Sets
	Union Unsorted Sets

	Order
	O(1)
	O(N)
	O(N2) or O(Nlog2N)

2
b.)
What contrasting features of lists and sets make these differences exist?

Lists can have repeated elements and so we do not need to check for duplicates. Lists do have order and so the concatenate must be at the end. In contrast, sets cannot have duplicates and so we must pay a price to check each element to be sure it is not already in the set. Fortunately, sets have no inherent order so we can sort elements in any way we want without adversely affecting the set’s contents.

5.
Consider an ordered binary tree data model. For each node, we use the term level to refer to the length of the unique path from the root to this node. The root is at level 0, its direct descendants are at level 1, etc. A Heap is a linear (one-dimensional array) data structure that represents tree relations by the simple mechanism that the i-th possible node at level j is stored at position 2j+i. (This assumes we store the root at position 1, as done in the text.)
3
a.)
Describe the simple arithmetic relations that exist to compute the indices of the left and right children from the index of their parent node, p, and the parent’s index from that of one of its children, c.

LeftChild(p) = 2  p

RightChild(p) = 2  p + 1

Parent(c) = c div 2
4
6.
The text focuses most of its discussions of Hash Tables on storing items with equal hash indices in the same Bucket. Each bucket is represented by a linked list, with the i-th table entry serving as the head of the linked list of all entries whose hash value is i. I talked about an alternative scheme in which all items are stored in a List, represented by a one-dimensional array, where collisions are handled by linear search.

Analyze the Bucket and the List techniques as regards expected time for insertion and lookup. Assume that there are N items in the table, B buckets (for the Bucket technique) and M slots in the array (for the List technique). Fill in values for the order of execution of the four specific cases below, assuming a hash function that distributes the N items evenly across the range of hash values.

	
	Insert / Lookup – They’re the same

	Bucket with B = 10
	O(N/10) = O(N)

	Bucket with B = N/2
	O(N / N/2) = O(2) = O(1)

	List with M = 2*N
	O(3) = O(1)

	List with M = N
	O(N)

6
7.
Consider the beloved heap.

Consider the following contents of a heap.

10 14 19 2 30 1 20 22

Show this as a balanced binary tree (that is, show the tree that this heap represents.)

[image: image7.wmf]19

2

22

20

30

1

14

10

What does this heap look like after a max heapify (buildHeap)? Show it as a list and then as a BPOT

[image: image8.wmf]20

10

2

19

14

1

22

30

6
8.
Consider the following trees being used to represent equivalence classes (partitions, disjoint sets) over the set {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. Show the resulting combination of the first two trees if we do a union(6,9). Now show the final tree that results after we do a union(6,16) – note this second operation is performed on the trees that result from the first union. In each case, assume that the union starts with two finds, each of which uses path compression, and that the unions use tree heights to minimize path lengths. In other words, you must do smart union and path compression on finds.

[image: image9.wmf]4

6

2

8

5

1

3

7

9

14

11

13

16

12

15

10

8
9.
The following is an 8-node bitonic sorting network that we have virtualized to handle 16 numbers. For each comparator, write a plus (+) or minus (–) to distinguish increasing from decreasing comparators.

Next show the values that are produced after each comparator performs its comparison swap. I have written the word Values under each column where you should be placing the eight pairs of values written on that communication line.

Values
Values
Values
Values
Values
Values

WILL DO IN CLASS

_1011513134.doc

3

4

0

5

1

2

_1011513186.doc

0

2

1

4

3

5

_1011513212.doc

0

1

2

3

4

5

_1011513157.doc

2

0

4

1

5

3

_980255874.doc

20

10

2

30

19

14

22

1

_1010840352.doc

4

3

0

5

2

1

_980255637.doc

19

2

22

10

20

30

14

1

_891847185.doc
���

2

16

21

30

13

26

3

24

15 35

9 14

18

27

17

20

