COP3503H, Fall 2011
-- 2 --
Midterm

COP 3503H– CS2 Fall 2011
Midterm
Name:
Key

8
1.
Consider the following algorithm to compute the cost of a minimum spanning tree.

List doMinSpan (int n, List edges) {

p = new Partition(n);

spanningEdges = new List();

Heap h = edges.heapify(); // min heap of edges

while (!h.empty()) { // still have more edges

edge = (Edge) h.deleteMin();

int p1 = p.find(edge.node1); int p2 = p.find(edge.node2);

if (p1 != p2) {

p.union(p1, p2);

spanningEdges.add(edge);

}

}

return spanningEdges;

}

What are the complexities of the bolded operations, assuming n nodes and e edges? Assume we do smart unions but we do not apply compression during finds on the partition trees.

edges.heapify() : O(e)

h.deleteMin() : O(lg e)

p.find(edge.node1) : O(lg n)

p.union(p1, p2) : O(1)

spanningEdges.add(edge) : O(1)

What is the overall complexity of this algorithm? Give a precise answer, then give a simpler one based on the assumptions that e = |edges| (n = |vertices| and the lg(e) = O(lg(n)).

O(e) + O(e*(lg e + lg n))

O(e lg n)

Is this a Divide & Conquer, Greedy or Dynamic Programming algorithm?

Greedy

2.
The Connected Components Problem for undirected graphs is to find all connected components in an undirected graph. A connected component is a subgraph that contains a path between every vertex, and includes all vertices that can connect to this subgraph. Let G = (V, E) be some undirected graph. V is a list (ordered collection) of objects of class Vertex. E is a collection of objects of type Edge. We assume our Vertex class contains a public field

Partition connectedComponents(List<Vertex> vertices, Collection<Edge> edges) {

p = new Partition(vertices.size());

for (Edge edge : edges)
p.union(edge.node1, edge.node2);

return p;
}

3

Assuming n nodes, e edges and M=max(n,e) where appropriate, analyze the running time of this algorithm, justifying all your statements. Here you should assume that the partition algorithm does smart union and path compression.

Creation of Partition = O(n)
Iterate through edges = O(e)

smart union with compression = O(1) or O(lg* n)

O(n) + O(e) [* lg* n]) = O(M) or O(M lg* n)

4

In pseudo-code describe a depth first search based algorithm to solve this same problem. You may assume added fields if useful in your Vertex class, but you must say what they are.
/* Assume G has attribute vertices (set)

 Add attributes neighbors (set) and component (int) to each vertex

*/

int n = 0, c = 0;

set s; // set that responds to add, remove, contains and isEmpty

DFS(v,c) {

v.component = c;

for all w in v.neighbors

if (w.component != 0) DFS(w,c);

}

ConnectComponents(G){

s.addAll(G.vertices);

c = 0;

for all v in s v.component = 0;

for all v in s

if (v.component != 0) DFS(v,++c);

}
2

What is the cost of the depth first search based algorithm you just described?

O(n) + O(e) = O(M)

3.
Consider the following implementation of Floyd’s algorithm.

public void floydsAlgorithm() {

 //for each pivot try all pairs of nodes

for (int v = 0; v < N; v++)

for (int w = 0; w < N; w++) distance[v][w] = Integer.MAX_VALUE;

for (int pivot = 0; pivot < N; pivot++)

for (int v = 0; v < N; v++)

for (int w = 0; w < N; w++)

if (v != w)

distance[v][w] = Math.min(distance [v][w], distance [v][pivot] + distance [pivot][w]);

}

4
a)
On the left, below, I have presented the adjacency matrix for some graph. Show the final values assigned to the elements of the distance matrix by Floyd’s algorithm. Hint: Do part (b) of this question first.

Adjacency Matrix

	
	0
	1
	2
	3

	0
	0
	7
	10
	(

	1
	(
	0
	1
	(

	2
	10
	(
	0
	4

	3
	(
	2
	(
	0

Distance Matrix

	
	0
	1
	2
	3

	0
	0
	7
	8
	12

	1
	11
	0
	1
	5

	2
	10
	6
	0
	4

	3
	13
	2
	3
	0

[image: image3.emf]

3

3
b)
Present the graph that is depicted by the above adjacency matrix.

[image: image4.emf]

3

[image: image5.emf]

3

1
c)
What is the complexity of this algorithm, assuming n nodes and e edges?

O(n3)

1
d)
Define what it means for a directed graph to be strongly connected (connected directed graphs).

There is a path from any vertex to any other through a set of directed edges.

2
e)
Explain how this algorithm can be used to determine if a graph is strongly connected.

The path is strongly connected if the resulting distance matrix has finite values in each cell.

2
f)
Why is it unwise to employ this algorithm for the strongly connected graph problem? Explain by describing an alternative approach that performs significantly better.

Because a depth first search can achieve the same result in O(e+n) time. The worst case of this is O(n2) whereas the best/worst/average case for the above is O(n3)

4.
Given the following weighted directed graph

[image: image1]
3
a.
Compute the shortest path from s to t. List the vertices (must start with s and end with t) that contributes to this path.

s, c, d, b, t length is 34
5
b.
Compute the network flow from s to t. List each path that contributes to this flow, with all intermediate nodes, and the amount contributed by that path.

s, a, b, t : 10

s, c, d, t : 8

s, a, b, c, d, t : 1 or s, a, c, d, t : 1
5
c.
Assume the edges above are no longer directed. Compute the minimum cost spanning tree (MST). State whether you are using Kruskal’s or Prim’s algorithm and show how your tree evolves at each step of the chosen algorithm by showing the tree or forest that has evolved so far.

Kruskal focuses on lightest edges that bring in a new element without creating a cycle. Prim’s focuses on a random node as root of spanning tree and then bringing in new nodes that involve lightest remaining edge that does not create a cycle.

Kruskal brings in edges in order a,c b,c b,d c,s b,t.

Prim’s can start with s then c then a then b then d then t.

I can do tree in class if anyone has a question about this.

5.
We described the proof that 3SAT is polynomial reducible to Subset-Sum.
2
a.)
 Describe the Subset-Sum decision problem.

Given a multi-set of natural numbers { i1, i2, i3, … in , G }, is there a sub multi-set of the i’s whose sum adds up to G, our goal value?
2
b.)
Justify that Subset-Sum is in NP
Given an instance of subset-sum { i1, i2, i3, … in , G } and a subsequence of i1,..,in, we can check if the sum of the selected items is G. If so, there is a solution. This is an O(n) check, so problem is in NP since O(n) is clearly polynomial.
3
c.)
Assuming a 3SAT expression (a + a + b) (~a + ~b + ~c), fill in the upper right part of the reduction from 3SAT to Subset-Sum.

	
	a
	b
	c
	a + a + b
	~a + ~b + ~c

	a
	1
	
	
	1
	

	~a
	1
	
	
	
	1

	b
	
	1
	
	1
	

	~b
	
	1
	
	
	1

	c
	
	
	1
	
	

	~c
	
	
	1
	
	1

	C1
	
	
	
	1
	

	C1’
	
	
	
	1
	

	C2
	
	
	
	
	1

	C2’
	
	
	
	
	1

	GOAL
	1
	1
	1
	3
	3

2
d.)
Show one set of numbers from your table that satisfy the Subset-Sum problem with the GOAL established above.

10010 + 01001 + 00101 + 00010 + 00010 + 00001 = 11133

3
e.)
Show a polynomial-time reduction from an arbitrary instance of Partition that is reducible to an instance of Subset-Sum.

Let S = { i1, i2, i3, … in } be an instance of Partition (a multi-set of natural numbers). The question we ask is “Is there a partition of this multi-set into two sub-multi-sets, S1, S2, such that S1 (S2 = S, S1 (S2 = (and the sum of the elements in S1 equals the sum of the elements in S2. We can recast this as the Subset-Sum problem { i1, i2, i3, … in , G } where G is half the sum of the elements in S. Clearly S can be partitioned evenly iff it has a sub-multi-set whose sum is the total sum divided by 2.

6.
Given the following independent tasks and execution times
T1/2, T2/5, T3/1, T4/6, T5/3, T6/8, T7/6

3

Show a schedule on two processors that optimizes mean finishing times.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	T3
	T5
	T5
	T5
	T4
	T4
	T4
	T4
	T4
	T4
	T6
	T6
	T6
	T6
	T6
	T6
	T6
	T6

	T1
	T1
	T2
	T2
	T2
	T2
	T2
	T7
	T7
	T7
	T7
	T7
	T7
	
	
	
	
	

3

Show a schedule on two processors that minimizes the finishing time of the last task.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	T3
	T5
	T5
	T5
	T4
	T4
	T4
	T4
	T4
	T4
	T7
	T7
	T7
	T7
	T7
	T7
	
	

	T1
	T1
	T2
	T2
	T2
	T2
	T2
	T6
	T6
	T6
	T6
	T6
	T6
	T6
	T6
	
	
	

3
7.
Consider the following system (times are written below task ids). Interpreting the lower numbered tasks as being of higher priority, display a two-processor non-preemptive schedule in the following Gantt chart.

[image: image2.wmf]

T1

7

T2

3

T6

3

T4

3

T3

2

T7

1

T5

4

	T3
	T3
	T1
	T1
	T1
	T1
	T1
	T1
	T1
	
	T7
	T2
	T2
	T2
	
	
	
	

	T4
	T4
	T4
	T5
	T5
	T5
	T5
	T6
	T6
	T6
	
	
	
	
	
	
	
	

5
8.
Fill in the Truth (T) or Falseness (F) of each of the following.

	Statement
	Veracity (True or False)

	NP means non-polynomial
	F

	NP-Hard problems are at least as hard as NP-Complete problems
	T

	All problems in P are also in NP
	T

	A problem is in P if a proposed solution can be checked in polynomial time
	F

	Minimum mean finishing time for a set of tasks on 2 processors is NP-Complete
	F

7

1

0

1�

10

2�

2

3

4�

a

s

c

b

d

t

8

24

9

10

4

_1049636950.doc

T1

7

T2

3

T6

3

T4

3

T3

2

T7

1

T5

4

