
COP 3503H – Mid-term Exam – Spring 2001

Thursday March 1, 2001

[100 points]

NO CALCULATORS MAY BE USED!

1. (15 points – Induction Proof)

Shown below is a conjecture. Complete an induction proof that proves the conjecture is true for all integer numbers greater than or equal to 1.
Show all your work.

[image: image1.wmf]å

=

+

=

+

n

1

i

1

n

4

n

2

i

2

i

2

1

)

(

)

(

base case: n = 1 LHS:
[image: image2.wmf]å

=

=

=

+

1

1

i

8

1

4

2

1

2

1

2

1

2

1

)

(

)

)

(

)[

(

RHS:
[image: image3.wmf]8

1

2

4

1

1

1

4

1

=

=

+

)

(

)

(

 proven

inductive hypothesis: assume true for all values of n = k:
[image: image4.wmf]å

=

+

=

+

k

1

i

1

k

4

k

2

i

2

i

2

1

)

(

)

(

induction step: prove true for n = k +1: RHS:
[image: image5.wmf]å

+

=

+

+

=

+

+

+

=

+

1

k

1

i

2

k

4

1

k

1

1

k

4

1

k

2

i

2

i

2

1

)

(

)

)

((

)

(

LHS:
[image: image6.wmf]å

å

+

=

=

+

+

+

+

+

=

+

1

k

1

i

k

1

i

2

1

k

2

1

k

2

1

2

i

2

i

2

1

2

i

2

i

2

1

]

)

(

)[

(

)

(

)

(

By the inductive hypothesis this is equal to:
[image: image7.wmf])

)(

(

)

(

4

k

2

1

k

2

1

1

k

4

k

+

+

+

+

[image: image8.wmf])

)(

(

)

(

)

)(

(

)

(

)

)(

(

)

(

2

k

1

k

4

1

1

k

4

k

4

k

2

2

k

2

1

1

k

4

k

4

k

2

1

k

2

1

1

k

4

k

+

+

+

+

=

+

+

+

+

=

+

+

+

+

[image: image9.wmf])

(

)

)(

(

)

)(

(

)

)(

(

)

)(

(

)

(

2

k

4

1

k

2

k

1

k

4

1

k

1

k

2

k

1

k

4

1

k

2

k

2

k

1

k

4

1

2

k

k

2

+

+

=

+

+

+

+

=

+

+

+

+

=

+

+

+

+

=

Since LHS = RHS the conjecture is proven.

2. (15 points – Bactracking Algorithms)

Shown below is a graph. You want to move from node 1 to node 6 in such a way that maximizes the value of your trip. Each edge in the graph has an associated value. Using the backtracking technique, draw the tree corresponding to search space for this problem. On any given level in the tree order the nodes from left to right based upon decreasing value. What is the optimal solution to the problem? Totally how many solutions are there to this problem?

2

4

 4 3 1

3

2

4

6

There are a total of 5 solutions, only one of which is optimal with a value of 15. Solutions are shown as purple nodes, the optimal solution as a red node.

3. (10 points) – Order Analysis)

For each of the recurrence relations shown below – determine the Big-Oh run-time. For each of them show how you arrived at your answer (an answer like O(N3) alone is not sufficient).

(a) (4 points) T(N) = 5T(N/4) + N2

A = 5, B = 4, k =2 A ? Bk, 5 ? 42, 5 < 42 so O(N2)
(b) (3 points) T(N) = 8T(N/3) + N2

A = 8, B = 3, k = 2 A ? Bk, 8 ? 32, 8 < 32 so O(N2)
(c) (3 points) T(N) = 4T(N/4) + N

A = 4, B = 4, k =1 A ? Bk, 4 ? 41, 4 = 41 so O(Nk log N)

4. (10 points – Recursive Algorithms)

For the recursive function shown below, provide a complete trace of every numbered statement encountered for the call whatdoesitdo(6). Show the result of the conditional test on line #1, the value returned by statements #2 and #3 at each return, and the parameter value on each recursive call. What is the final value that would be returned to the original caller?

int whatdoesitdo (int n)

(1)
{ if (n == 0)

(2)
 return 0;

 else

(3)
 return 3 * whatdoesitdo(n-1) + n + n * 3;

} //end whatdoesitdo

whatdoesitdo(6)

n ≠ 0

return(3 * whatdoesitdo(5) + 6 +18)
 evaluates to: 2172

final value returned = 2172

whatdoesitdo(5)

n ≠ 0

return(3 * whatdoesitdo(4) + 5 + 15)
 evaluates to: 716

whatdoesitdo(4)

n ≠ 0

return(3* whatdoesitdo(3) + 4 + 12)
evaluates to: 232

whatdoesitdo(3)

n ≠ 0

return(3 * whatdoesitdo(2) + 3 + 9) evaluates to: 72

whatdoesitdo(2)

n ≠ 0

return(3 * whatdoesitdo(1) + 2 + 6)
evaluates to: 20

whatdoesitdo(1)

n ≠ 0

return(3 * whatdoesitdo(0) + 1 + 3) evaluates to: 4

whatdoesitdo(0)

n = 0

return 0

5. (30 points – allocated as indicated – Sorting Algorithms)

For the unsorted array A[0..11] shown below, answer questions (a) through (d). Write your final answer in the space provided AND show your work on the attached pages (for parts (a) thru (c)). Each page is clearly labeled as to the problem to which it pertains – be sure and put your work on the proper page. You will ONLY receive full credit for a problem if the answer is correct and you have shown your work (the intermediate steps).

Array A

index
0
1
2
3
4
5
6
7
8
9
10
11

value
10
9
8
7
1
2
3
4
12
5
13
15

(a) (10 points) Show the steps of a merge sort on array A. Show each split down to the base case and each merge back to the final sorted array.

(b) (5 points) Show the exact contents of array A after the 6th pass of an insertion sort.

index
0
1
2
3
4
5
6
7
8
9
10
11

value
1
2
7
8
9
10
3
4
12
5
13
15

(c) (10 points) Show the exact contents of array A after the 2-sort phase of a Shell sort is completed. Assume that the initial gap is 6 and only even gaps are used.

index
0
1
2
3
4
5
6
7
8
9
10
11

value
1
2
3
4
8
5
10
7
12
9
13
15

(d) (5 points) List every inversion in the original unsorted array A. (Show this answer here.)

(10,9) (10,8) (10,7) (10,1) (10,2) (10,3) (10,4) (10,5)

(9,8) (9,7) (9,1) (9,2) (9,3) (9,4) (9,5)

(8,7) (8,1) (8,2) (8,3) (8,4) (8,5)

(7,1) (7,2) (7,3) (7,4) (7,5)

(12,5)

6. (20 points total – 2 points each – various topics TRUE/FALSE)

Indicate, for each of the statements below whether it is true or false statement by circling the letter T if the statement is true and circling the letter F if the statement is false.

(a) Given that f1(n) = O(g(n)) and f2(n) = O(g(n)), then f1(n) = f2(n).
T

F

(b) Given non-negative functions f1(n), f2(n), g1(n), and g2(n), such

 that f1(n) = O(g1(n)) and f2(n) = O(g2(n)), then for all integers n (0,

 if g1(n) < g2(n) it must be that f1(n) < f2(n).

T

F

(c) Searching in a binary tree takes O(log2 N) time, in the worst case.
T

F

(d) Backtracking algorithms attempt to produce solutions without an

 exhaustive search for a solution.

T

F

(e) The MCSS problem can be solved in O(N) time.

T

F

(f) Stacks are FIFO structures, while queues are LIFO structures.

T

F

(g) Omega notation (((N)) provides a lower bound on the run-time

 of an algorithm.

T

F

(h) A binary search on 300 sorted integers will make at most 9

 comparisons.

T

F

(i) Dynamic programming typically requires more storage than

 does recursion.

T

F

(j) Greedy algorithms always produce solutions which are usually

 the optimal solution.

T

F

7. (10 points)

Given a queue which initially contains the items shown below and the following sequence of operations on that queue, show the exact contents of the queue after the sequence of operations on the stack has been performed. Also, assuming that every dequeue operation simply prints out the value that is dequeued from the queue, show exactly what is dequeued and preserve the order in which it is dequeued. Show your work.

I
A
M
D

 head

tail

Operation Sequence:

(0) enqueue(O)

(1) dequeue()

(2) enqueue (N)

(3) dequeue()

(4) dequeue()

(5) enqueue (E)

(6) enqueue (N)

(7) dequeue()

(8) dequeue()

(9) enqueue (O)

(10) enqueue (T)

(11) dequeue()

(12) dequeue()

Output: IAMDONE

Queue at the end of the command sequence:

N
O
T

head

tail

Answer for Problem 5a:

Array A

index
0
1
2
3
4
5
6
7
8
9
10
11

value
10
9
8
7
1
2
3
4
12
5
13
15

Answer for Problem 5b.

index
0
1
2
3
4
5
6
7
8
9
10
11

initial
10
9
8
7
1
2
3
4
12
5
13
15

pass 1
10
9
8
7
1
2
3
4
12
5
13
15

pass 2
9
10
8
7
1
2
3
4
12
5
13
15

pass 3
8
9
10
7
1
2
3
4
12
5
13
15

pass 4
7
8
9
10
1
2
3
4
12
5
13
15

pass 5
1
7
8
9
10
2
3
4
12
5
13
15

pass 6
1
2
7
8
9
10
3
4
12
5
13
15

Answer for Problem 5c.

index
0
1
2
3
4
5
6
7
8
9
10
11

initial
10
9
8
7
1
2
3
4
12
5
13
15

6-sort
10

3

9

4

8

12

7

5

1

13

2

15

6-sorted
3
4
8
5
1
2
10
9
12
7
13
15

4-sort
3

1

12

4

2

7

8

10

13

5

9

15

4-sorted
1
2
8
5
3
4
10
9
12
7
13
15

2-sort
1

8

3

10

12

13

2

5

4

9

7

15

2-sorted
1
2
3
4
8
5
10
7
12
9
13
15

NAME:

Student ID:

5

4

3

2

1

6

KEY

6:13

5:11

2:7

5:13

6:13

5:11

6:14

6:15

2:9

4:8

6:11

5:9

1:0

2:2

3:4

1 2 3 4 5 7 8 9 10 12 13 15

3 4 5 12 13 15

1 2 7 8 9 10

5 13 15

3 4 12

4 12

13 15

1 2 7

1 2

8 9 10

8 9

15

13

12

4

13 15

2

1

8

9

4 12

5

3

7

1 2

9 8

10

3 4 12

10 9 8

5 13 15

7 1 2

3 4 12 5 13 15

10 9 8 7 1 2

PAGE
9

_1045338691.unknown

_1045338890.unknown

_1045339139.unknown

_1045339252.unknown

_1045339026.unknown

_1045338765.unknown

_1045338525.unknown

_1045338600.unknown

_1044903767.unknown

