COP 3503 – Final Exam Practice Problems - SOLUTIONS

1. For the binary tree shown below, show the output of a preorder traversal of the tree.  For additional practice do: inorder, postorder, and level order traversals.
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Preorder –   A, B, C, D, E, F, G, H, I

Additional Practice:

Inorder –     B, D, C, A, F, H, G, I, E

Postorder – D, C, B, H, I, G, F, E, A

Levelorder  - A, B, E, C, F, D, G, H, I 

2. Define and explain the following terms:

(1) a greedy algorithm –

a locally optimal decision is made by the algorithm without regards to the future consequences or overall optimality of the decision made at that point.

(2) divide and conquer algorithm

a recursive algorithm that consists of two parts: (1) recursively dividing the problem into smaller and smaller subproblems ultimately arriving at the base case, and (2) the solution of the original problem is formed from the solutions to the subproblems.

3.   Show the contents of a stack after each of the following operations.  What is the final value of the stack?

(1) push (20)

(2) push (15)

(3) push (pop( ) - pop( ))

(4) push (10)

(5) push( pop( ) + pop( ))

(6) top( )




stack = [20]

stack = [15, 20]

stack = [(5]

stack = [10,( 5]

stack = [5]

return 5

4.   Shown below is an expression tree that represents a valid infix expression.  Convert the expression to a prefix expression.  What technique did you use to do this conversion?  For additional practice assume that you want the postfix form of the expression from the tree.
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prefix expression is:    / * c + a b * e – f g

technique is a prefix traversal of the tree

Additional practice:  postfix traversal of the tree give the postfix expression:  c a b + * e f g - * /

5.  Write a pseudocode algorithm that will delete an arbitrary node identified by the pointer del from a doubly linked list.


function delete (list, del)


{
// list is the doubly-linked list, del points to the node to delete



// list node contains data field and two pointer fields: prev and next


behind : pointer;



behind = del.prev;



del.next.prev = behind;



behind.next = del.next;



free(del);  //return node to the heap (optional)


}

6.  Shown below is a conjecture.  Complete an induction proof that proves the conjecture is true for all integer numbers greater than or equal to 1.
Conjecture: 
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Proof by Induction

base case:  n = 1

LHS:  
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   RHS:  
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inductive hypothesis:  n = k       
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induction step:  n = k+1     
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LHS: 
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RHS: 
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Since the LHS = RHS for the inductive step, the conjecture is proven true.

7.
Consider the linked lists shown below.  Connect the new node into its proper place within the existing list.  What are the three lists representing?  What is the Big-Oh time complexity of this operation?
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     in2
       in3






          null             null

in1
















  null








       newnode

List 

represents a list of  odd numbers in ascending order

List

represents a list of even numbers in ascending order

List 

represents a list of prime numbers in ascending order

Big-Oh time complexity is:  in general you must “find” the correct location to insert the new node in three different lists – thus 3n = O(n) where n is the number of nodes in the list.

8.
An algorithm takes 0.5 msec to run on an input set of size 100.  How long will the algorithm take to run if the input size is 500 and the algorithm is (a) cubic, (b) quadratic, and (c) linear?
(a) cubic algorithm:  T(N) = cN3, thus T(5N) = c(5N)3  ( T(5N) = 125cN3 = 125T(N) therefore T(500) = 125(0.5(10-3 sec) = 0.0625 seconds (62.5 msec)

(b) quadratic algorithm: T(N) = cN2, thus T(5N) = c(5N)2  ( T(5N) = 25cN2 = 25T(N) therefore T(500) = 25(0.5(10-3 sec) = 0.0125 seconds (12.5 msec)

(c) linear algorithm: T(N) = cN, thus, T(5N) = c(5N) ( T(5N) = 5cN = 5T(N) therefore T(500) = 5(0.5(10-3 sec) = 0.0025 seconds (2.5 msec)

9.
Given the array shown below, show the results of  each pass of a Shell sort on the array assuming that that initial gap is 5 (i.e., do a 5-sort first) and only odd numbered gaps are used.
index
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

value
8
5
35
23
14
9
2
6
33
1
16
17
24
27
12
40
13

work area

















5-sort
8
5
35
23
14
9
2
6
33
1
16
17
24
27
12
40
13


8
2
6
23
1
9
5
24
27
12
16
13
35
33
14
40
17

end 5-sort
8
2
6
23
1
9
5
24
27
12
16
13
35
33
14
40
17

3-sort
8
2
6
23
1
9
5
24
27
12
16
13
35
33
14
40
17


5
1
6
8
2
9
12
16
13
23
17
14
35
24
27
40
33

end 3-sort
5
1
6
8
2
9
12
16
13
23
17
14
35
24
27
40
33

1-sort
1
5

















1
5
6
















1
5
6
8















1
2
5
6
8














1
2
5
6
8
9













1
2
5
6
8
9
12












1
2
5
6
8
9
12
16











1
2
5
6
8
9
12
13
16










1
2
5
6
8
9
12
13
16
23









1
2
5
6
8
9
12
13
16
17
23








1
2
5
6
8
9
12
13
14
16
17
23







1
2
5
6
8
9
12
13
14
16
17
23
35






1
2
5
6
8
9
12
13
14
16
17
23
24
35





1
2
5
6
8
9
12
13
14
16
17
23
24
27
35




1
2
5
6
8
9
12
13
14
16
17
23
24
27
35
40


sorted
1
2
5
6
8
9
12
13
14
16
17
23
24
27
33
35
40

10.
Write a pseudo-code algorithm that reads in a line of characters and prints them out in reverse order.  Your algorithm must make use of one or more of the following data structures: queue, binary tree, stack, priority queue.


void reverse_print  ()


{  create stack;   //create a stack



while (!full.stack && (item = getchar()) != end_of_line)



       push(item);  // push the character just read onto the stack



while (!empty.stack)



      {
pop(item);




write(item);



       }


}//end reverse_print

11.
Suppose that we want to multiply two positive n-digit (or n-bit) integers X and Y.  For simplicity, lets assume that n is a power of 2.  The way that you were taught to do this in grade school involves computing n partial products each of size n and is thus an O(n2) technique (if single digit multiplications and additions are considered 1 step operations). Now consider the following technique:



1. X is broken into two halves A and B as shown:




thus, X = A2n/2 + B



2. Y is similarly broken into two halves C and D as shown:




thus, Y = C2n/2 + D

3.  The product XY can be calculated according to: 

AC2n + [(A – B)(D – C)+ AC + BD]2n/2 + BD


The algorithm to produce this result is:



function int  multiply (X, Y, n)



{  //X and Y are positive integers ( 2n, n is a power of 2, XY is returned



    if n ==1 





if (X ==1) && (Y ==1)





return 1




else      return 0



    else



    {   //divide X and Y each into two halves of size n/2



       A = left n/2 digits of X;



       B = right n/2 digits of X;



       C = left n/2 digits of Y;



       D = right n/2 digits of Y;



       m1 = multiply(A, C, n/2);



       m2 = multiply(A(B, D(C, n/2);



       m3 = multiply(B, D, n/2);

                               return( m1*2n + (m1 + m2 + m3) * 2n/2 + m3))



   }



}

(a) 
What general problem solving technique has been employed in this algorithm?


Divide and conquer.

(b)   Assuming that the overhead operations required by this algorithm are linear, what is the Big-Oh running time of this multiplication algorithm?


Number of subproblems to be solved, A = 3 (there are 3 recursive calls in the algorithm).


Size of the subproblems, B = 2 (each integer is broken into 2 halves).


Overhead is linear so, k = 1


To determine the running time of this divide and conquer algorithm we have:


A ? Bk  ( 3 > 21 (  O(NlogBA) = O(Nlog23) = O(N1.59)

(c)
Does this algorithm run faster than the technique you were taught in grade school?  If it does, what might be a reason that you weren’t taught this algorithm in grade school?


One reason is the complexity of the technique – 2nd and 3rd graders might not understand the technique!  Another reason is that we have ignored constants of proportionality.  While the algorithm is assymptotically superior to the partial product technique, the constants are such that for numbers with less than about 500 bits, the grade school technique is faster! 

13.  Produce both a depth-first and a breadth-first traversal of the following tree.  Show the contents of the supporting data structures (at each step) as well.



Solutions:

Depth-First Traversal requires an additional stack.  This is shown with the format: [ top … bottom]

1.   [6]

2.   visit 6, push children [ 7, a, 5, 4, 13]

3.   visit 7, push children [ 1, 2, 3, a, 5, 4, 13]

4.   visit 1, no push – no children [2, 3, 1, 5, 4, 13]

5.   visit 2, push children [m, n, 3, 1, a, 5, 4, 13]

6.   visit m, no push – no children [n, 3, 1, a, 5, 4, 13]

7.   visit n, push children [x, 3, 1, a, 5, 4, 13]

8.   visit x, no push – no children [3, 1, a, 5, 4, 13]

9.   visit 3, no push – no children [1, a, 5, 4, 13]

10. visit 1, no push – no children [a, 5, 4, 13]

11. visit a, no push – no children [5, 4, 13]

12. visit 5, push children [e, 4, 13]

13. visit e, push children [b, 4, 13]

14. visit b, no push – no children [4, 13]

15. visit 4, push children [f, 13]

16. visit f, push children [11, 13]

17. visit 11, no push – no children [13]

18. visit 13, push children [10, 9, 8, 7]

19. visit 10, push children [r, s, 9, 8, 7]

20. visit r, push children [14, s, 9, 8, 7]

21. visit 14, no push – no children [s, 9, 8, 7]

22. visit s, no push – no children [9, 8, 7]

23. visit 9, no push – no children [8, 7]

24. visit 8, no push – no children [7]

25. visit 7, push children [t]

26. visit t, no push – no children

DONE

Output order: 6, 7, 1, 2,  m, n, x, 3, 1, a, 5, e, b, 4, f, 11, 13, 10, r, 14, s, 9, 8, 7, t

Breadth-First Traversal requires an additional queue.  This is shown with the format: [head … tail]

1.   [6]

2.   visit 6, enqueue children [7, a, 5, 4, 13]

3.   visit 7, enqueue children [a, 5, 4, 13, 1, 2, 3]

4.   visit a, no children – no enqueue [5, 4, 13, 1, 2, 3]

5.   visit 5, enqueue children [4, 13, 1, 2, 3, e]

6.   visit 4, enqueue children [13, 1, 2, 3, e, f]

7.   visit 13, enqueue children [1, 2, 3, e, f, 10, 9, 8, 7]

8.   visit 1, no children – no enqueue [2, 3, e, f, 10, 9, 8, 7]

9.   visit 2, enqueue children [3, e, f, 10, 9, 8, 7, m, n]

10. visit 3, no children – no enqueue [e, f, 10, 9, 8, 7, m, n]

11. visit e, enqueue children [f, 10, 9, 8, 7, m, n, b]

12. visit f, enqueue children [10, 9, 8, 7, m, n, b, 11]

13. visit 10, enqueue children [9, 8, 7, m, n, b, 11, r, s]

14. visit 9, no children – no enqueue [8, 7, m, n, b, 11, r, s]

15. visit 8, no children – no enqueue [7, m, n, b, 11, r, s]

16. visit 7, enqueue children [m, n, b, 11, r, s, t]

17. vist m, no children – no enqueue [n, b, 11, r, s, t]

18. visit n, enqueue children [b, 11, r, s, t, x ]

19. visit b, no children – no enqueue [11, r, s, t, x]

20. visit 11, no children – no enqueue [r, s, t, x]

21. visit r, enqueue children [s, t, x, 14]

22. visit s, no children – no enqueue [t, x, 14]

23. visit t, no children – no enqueue [x, 14]

24. visit x, no children – no support [14]

25. visit 14, no children – no support

14.  For the character frequency array shown below, construct the Huffman coding tree.  Each internal node stores only an integer and each leaf node stores the letter and its corresponding frequency.  Once you have constructed the Huffman coding tree, produce the Huffman code for each character in the frequency array.  Notice that since there are six characters which appear in the file to be compressed that the initial uncompressed code would require three bits/character.  Once you have determined the Huffman code compute the amount of compression that the code has generated.

Letter
a
b
c
d
e
f

Frequency
10
15
8
3
7
4

Huffman Code
00
10
01
1111
110
1110



  


             0     
                        1
   0                  1

          0                      1

        



                         

         

     0
                         1











       0
                     1

15.
The linear congruential generator produces random numbers X1, X2, …Xn , which satisfy the expression:   


Determine the length of the period of the sequence of random numbers generated by this algorithm assuming the values, A = 5, X0 = 1, and M = 11.   Show your work at each step and show every value in the period of the sequence as well as length of the period.  Does this value of A provide a full period?


X0 = 1


X1 = 5(1)[mod 11] = 5


X2 = 5(5)[mod 11] = 4


X3 = 5(4)[mod 11] = 9


X4 = 5(9)[mod 11] = 1  -  sequence repeats


Sequence is 1, 5, 4, 9


Period is 4


No, this is not a full period.

16.  Given the two functions below, determine which is asymptotically bigger?  Show your justification.



f(n) = 4n3 + 3n2 + 5n + 2
g(n) = 24n2 + 35n + 10

 

divide both functions by n3 (to reduce dominant term to a constant) which will produce:


Thus, 4n3 + 3n2 + 5n + 2 is asymptotically bigger than 24n2 + 35n + 10.

Similarly, 24n2 + 35n + 10 is asymptotically smaller than 4n3 + 3n2 + 5n + 2.

Alternate view of the solution for Problem #9.

index
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

value
8
5
35
23
14
9
2
6
33
1
16
17
24
27
12
40
13

5-sort
8




9




16




40




5




2




17




13




35




6




24









23




33




27









14




1




12



5-sorted
8
2
6
23
1
9
5
24
27
12
16
13
35
33
14
40
17

3-sort
8


23


5


12


35


40




2


1


24


16


33


17




6


9


27


13


14



3-sorted
5
1
6
8
2
9
12
16
13
23
17
14
35
24
27
40
33

1-sort
1
5

















1
5
6
















1
5
6
8















1
2
5
6
8














1
2
5
6
8
9













1
2
5
6
8
9
12












1
2
5
6
8
9
12
16











1
2
5
6
8
9
12
13
16










1
2
5
6
8
9
12
13
16
23









1
2
5
6
8
9
12
13
16
17
23








1
2
5
6
8
9
12
13
14
16
17
23







1
2
5
6
8
9
12
13
14
16
17
23
35






1
2
5
6
8
9
12
13
14
16
17
23
24
35





1
2
5
6
8
9
12
13
14
16
17
23
24
27
35




1
2
5
6
8
9
12
13
14
16
17
23
24
27
35
40


sorted
1
2
5
6
8
9
12
13
14
16
17
23
24
27
33
35
40
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47





b/15





29





a/10





18





c/8





14





7





e/7





f/4





d/3





old code = 3 bits/letter, 47(3 = 141 bits


new code = (15(2) + (10(2) + (8(2) 


	        + (7(3) + (4(4) + (3(4) 


	    = 115 bits





Saved 26 bits (18.4% compression)
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