COP 3503 – Computer Science II – CLASS NOTES - DAY #8

[image: image1.wmf]å

=

j

i

k

k

A

More on Recursion

Let’s look at a couple recursive static methods in Java that calculate Fibonacci and Factorials, respectively:

[image: image2.wmf]å

=

j

i

k

k

A

Here is a recursive binary search:

Consider the following problem:

Given a positive integer value of cents, how many different ways can we make change equaling that number of cents, using only pennies, nickels, dimes, and quarters.

Here is a recursive solution:

There is A LOT going on in this short piece of code. The essential idea is the following:

If you have n cents, you could make change for it by doing the following:

1) use a quarter, then count how many ways to change n-25 cents

2) use a dime, then count how many ways to change n-10 cents

3) use a nickel, then count how many ways to change n-5 cents

4) use a penny, then count how many ways to change n-1 cents

But, there’s a problem here – what is it?

So we can take care of this problem with the following stipulations:

1) use a quarter, then count how many ways to change n-25 cents

2) use a dime, then count the ways to change n-10 cents, with dimes or less

3) use a nickel, then count the ways to change n-5 cents, with nickels or less

4) use a penny, then count the ways to change n-1 cents, with pennies or less

Why does this take care of our problem?

Essentially, in our function, we return the number of ways to make change for cents cents, where den is our largest denomination. THUS, the number of recursive calls we make DEPENDS on our value of DEN. If DEN=5, then we only need to make 2 calls, if it’s 10 we need to make 3, etc. The sum of these recursive calls is the answer to our question.

Notice, how we add the values returned by the appropriate number of recursive calls using the switch statement WITHOUT breaks. You can certainly implement this algorithm without a switch statement, but then the code would be slightly more cumbersome.

Also, we need to take a look at our “base” cases so to speak. A recursive function CAN NOT call itself always. (Why is this?) So, when the problem is easy enough to solve on it’s own right, you can just directly solve the problem. In essence, as was mentioned in CS1, you do one of two things:
1) Solve the problem because it’s simple.

2) Take a step towards the solution and then make a recursive call to solve the smaller subproblem needed to solve the original problem.

Typically, this choice in execution is represented by an if statement.

Here is a way to approach writing a recursive function:

1) Assume you have a function that ACCOMPLISHES what you want to do that already works.

2) Now, the only stipulation is that when you write your own function, you are NOT allowed to call the function in step 1 with the SAME EXACT parameters as you are passed. Other than that, you are free to use the function in #1 in any way you’d like to, if it helps you finish your own task.

Divide and Conquer
Divide and conquer is an important problem-solving technique that relies on recursion. [Note: Not all recursive algorithms are divide and conquer.] Divide and conquer is a top down approach to problem solving meaning that an initial problem is subdivided into smaller subproblems, each of which is similar in nature to the original problem – only it is smaller. Each of the smaller subproblems is solved independently. A divide and conquer algorithm is a recursive algorithm that consists of two parts:

(1) Divide: smaller problems are solved recursively (except for the base case).

(2) Conquer: the solution to the original problem is then formed from the solutions to the subproblems.

Traditionally, algorithms that contain two recursive calls are called divide and conquer algorithms while those that contain only a single recursive call are not. Also, in order to avoid excessive computational cost, the subproblems should be disjoint (non-overlapping).

The divide and conquer strategy has been applied to many different types of problems including: matrix multiplication, minimax problems, sorting, and searching. Since the original problem is divided into several subproblems, divide and conquer algorithms are well suited to implementation on parallel computers.

Example 1 – Divide and Conquer – MCSS Problem

The Maximum Contiguous Subsequence Sum Problem Revisited

Recall the problem:

Maximum Contiguous Subsequence Sum: given (a possibly negative) integers A1, A2, …, AN, find (and identify the sequence corresponding to) the maximum value of

For the degenerate case when all of the integers are negative, the maximum contiguous subsequence sum is zero.

Example: If input is: {-2, 11, -4, 13, -5, 2}. Then the output is: 20.

 If the input is {1, -3, 4, -2, -1, 6}. Then the output is 7.
A divide and conquer algorithm for the MCSS problem divides the input data set into two halves. Once this is done the MCSS can occur in one of three ways:

(1) the MCSS is entirely in the first half of the input set.

(2) the MCSS is entirely in the second half of the input set.

(3) the MCSS begins in the first half and ends in the second half of the input.

Graphically this is illustrated as follows:

A

B

case 1:

A

B

case 2:

A

B

case 3:

What we need to show is that each of these three cases can be solved more efficiently than by an exhaustive search.

Consider case 3: we know that the last element of the A array is in the MCSS and the first element of the B array is in the MCSS. Therefore to compute sums in A and B we read from right-to-left in A and left-to-right in B. Thus the biggest sum calculated from A + biggest sum calculated from B = MCSS. Since these calculations can be done consecutively (compute sum in A, the compute sum in B). This can be done in linear time. So for case 3 the divide and conquer approach yields an O(N) running time.

For cases 1 and 2 the divide an conquer approach yields two recursive calls (one on each half of the original array. So (1) compute MCSS on array A, (2) compute MCSS on array B, (3) compute via two consecutive loops the MCSS for case 3, and (4) choose the largest from steps 1-3.

N

N/2

N/4

N/8

As you can see the repeated dividing of the original problem and the subsequent subproblems is each O(N). Level 1 has one array of size N thus O(N). Level 2 has two arrays each of size N/2, so (2*N/2) = O(N). Level 3 has four arrays each of size N/4, so (4*N/4) = O(N). And finally, level 4 has eight arrays each of size N/8, so (8*N/8) = O(N). Level 4 represents the base case, when each array is of size 1. Note also that each of the individual data items on level 4 must be checked to determine if it is positive or not.

Since each level halves the size of the basic problem – the halving principle tells us that there are approximately log2 N levels (there are exactly 1 + (log2 N(, thus the total running time is O(N log2 N). [Note that there is also an O(N) term that covers case 3 which isn’t shown here in the final Big-Oh analysis.]

This is an intuitive explanation of the running time analysis, in general a recursive algorithm should not be analyzed in this fashion – a more formal mathematical treatment is required. This is shown after another example.

Example 2 – Divide and Conquer – Detecting a Counterfeit Coin

Suppose that you are given a bag containing 16 coins and told that one of the coins may be counterfeit. Further, you are told that counterfeit coins are lighter than genuine coins. To assist you in your task you have a machine that will compare the weights of two sets of coins and tell you which set is lighter or whether both sets have the same weight. There are two related questions that you could be asked to solve: (1) Is there a counterfeit coin present in the bag? (2) Identify the counterfeit coin.

Consider the following strategy for determining the presence of a counterfeit coin: Compare the weights of coins 1 and 2. If coin 1 is the lighter – it is the counterfeit and your task is complete! Similarly, if coin 2 is the lighter your task is complete and the counterfeit has been identified. If coins 1 and 2 have the same weight then you must continue by comparing coins 3 and 4 and so on. In the worst case, you will not complete your task until coins 15 and 16 have been compared – this means that you will have made 8 comparisons. Proceeding in this fashion allows you to answer both questions simultaneously as you will be able to identify the counterfeit coin as the result of a comparison (question 2) which also provides the answer to the first question. The table below illustrates the time required to answer the two questions for this problem instance in terms of the number of comparisons required to answer the question.

Question
Best case time
Average time
Worst case time

1
1
4
8

2
1 (success case)
4
8

Was the technique just described a divide and conquer strategy? Yes and no! Certainly the original problem involving the 16 coins was divided into a set of smaller subproblems each similar to the original problem. However, a better use of the divide and conquer strategy will result in an improved performance for our algorithm. Consider the following strategy: Divide the 16 coins into two sets of 8 coins (randomly selected for each set) called sets A and B. Making a single comparison of the weights of the two sets will allow us to answer question 1. In order to answer question 2 more comparisons will need to be performed as follows: The lighter set from the first comparison obviously contains the counterfeit coin. Take this set and divide it into two different sets called C and D. For our example, sets C and D will each contain four coins (approximately – there is no real need to make them exactly the same size). A similar procedure will be followed for C and D resulting in a second comparison. Again the lighter of C and D will contain the counterfeit coin and this set will be further divided into two sets called E and F. Now sets E and F contain 2 coins each [note that this is the base case for this problem as since a set size of 1 leaves us without any comparison criteria]. A third comparison will identify the lighter set between E and F. Dividing the lighter of E and F into sets G and H will produce sets with only a single coin in each. Comparison of G and H will answer question 2 after a fourth comparison has occurred. The following table illustrates the improvement in the number of comparisons this true divide and conquer strategy exhibits compared to our first strategy.

Question
Best case time
Average time
Worst case time

1
1
1
1

2
1 (failure case)
4
4

Which strategy would you use now to solve this problem?

More Formal Mathematical Treatment
As was mentioned earlier – a more formal explanation of how the divide and conquer approach performs is

· Let T(N) be the time required to solve the MCSS problem of size N.

· If N=1 then it takes a constant amount of time to determine that the array is of size 1. Thus T(1) = 1.

· In all other cases the problem is divided into half via the two recursive calls plus the linear time of case 3. Since each of these subproblems is of size N/2 they each will require T(N/2). But there are two of these subproblems so the time is 2T(N/2).

· So T(N) = 2T(N/2) + O(N).

· Replacing the O(N) term with N and assuming that N is a power of 2 we have:

· T(1) = 1 and T(N) = 2T(N/2) + N

· Theorem 7.4 states that if N is a power of 2 the solution to the equation T(N) = 2T(N/2) + N with initial condition T(1)=1 is

T(N) = N log2 N + N

This is exactly what was shown in the previous diagram. (Proof of Theorem 7.4 is on page 202 in the textbook.)

� EMBED Equation.3 ���

 MCSS

 MCSS

 MCSS

Example – case 3

Array A�
Array B�
�
�
4�
-3�
5�
-2�
-1�
2�
6�
-2�
Values�
�
4�
0�
3�
-2�
-1�
1�
7�
5�
Running Sums�
�

MCSS = 11 since MaxSum(A) + MaxSum(B) = 4 + 7 = 11

4 -3 5 -2 -1 2 6 -2

4 -3 5 -2

-1 2 6 2

4 -3

5 -2

-1 2

6 -2

4

-3

5

-2

-1

2

6

-2

Chapter 7

public static int Fibonacci(int n)

{

 if (n < 0)

	return –1; // This signifies an illegal input parameter.

 else if (n < 2)

	return n;

 else

	return Fibonacci(n-1) + Fibonacci(n-2);

 }

public static int Factorial(int n) {

 if (n < 0)

	return –1; // This signifies an illegal input parameter.

 else if (n < 2)

	return 1;

 else

	return n*Factorial(n-1);

}

public static int Search(int[] X, int low, int high, int value) {

	if (low > high)

	 return -1;

	else {

	 int mid = (low + high)/2;

	 if (value > X[mid])

	 return Search(X,mid+1,high,value);

	 else if (value < X[mid])

	 return Search(X,low,mid-1,value);

	 else

	 return mid;

	}

}

public static int Change(int cents, int den) {

	if (cents < 0)

	 return 0;

	else if (den == 1 || cents == 0)

	 return 1;

	else {

	 int sum = 0;

	 switch(den) {

	 case 25: sum+=Change(cents-25,25);

	 case 10: sum+=Change(cents-10,10);

	 case 5: sum+=Change(cents-5,5);

	 case 1: sum+=Change(cents-1,1);

	 }

	 return sum;

	}

}

Day 8 - 8

_1009569676.unknown

