COP 3503 – Computer Science II – CLASS NOTES - DAY #7
General Trees
A tree consists of a set of nodes and a set of edges that connect pairs of nodes. A tree is an instance of a more general data structure known as a graph. We will be concerned with rooted trees. A rooted tree has the following characteristics:

· One node is distinguished as the root node.

· Every node c (except the root node) is connected by an edge from exactly one other node p. The node p is c’s parent. The node c is one of p’s children. A leaf node has no children.

· There is a unique path from the root to each node in the tree. The number of edges that must be traversed to go from node a to node b is called the path length from a to b.

· Siblings are all the child nodes on the same ply or all nodes with the same path length from the root.

The tree data structure is a fundamental one in computer science. Many operating systems arrange their file systems using tree structures, thus you have directories with sub-directories and so on. Tree structures are also often used by compilers during their parsing and code generation phases for handling arithmetic expressions and other constructs in the language being compiled. An example of a general tree is shown below followed by an example illustrating its use as an expression tree.

Trees are commonly implemented like a linked list, albeit with more pointers involved. Since traversing the tree requires movement both up and down the tree, pointers in both directions from a given node are typical. A node has the following general format.

For the root node: the pointer to the parent is null

For a leaf node: the set of pointers to the children are all null

For an internal node: the pointers all have values

Binary Search Trees (BST)

· Used for dynamic searching.
· A tree where each node can have at most two children.
· Some sort of ordering is imposed on the nodes of the tree.
· Typically supports three operations:
1. insertion
2. deletion
3. find – (name or rank) – worst case: O(N), average case: O(log2 N)

Hash Tables
· Provides dynamic searching capabilities based upon name alone.

· Avoids two problems of the BST. (1) Not O(N) in the worst case, and (2) does not require the repetitive memory maintenance of the BST which requires reorganization of the tree after every insertion and deletion.

· A hashing function is associated with the table that converts an input value (a key value) into an integer value that represents an address within the table (a location in the hash table).

· Data collision results any time that the hash function yields an address for a new input value that is already occupied by an existing data value. Without resolving the collision – the new input value is simply lost!

· Searching the hash table is an O(1) operation.

· Hash tables are used in search engines and extensively by compilers and assemblers.

· Hash tables are very useful any time a fast lookup is needed.

Priority Queues

· This data structure supports access only to the item which has the highest priority (this is the minimum priority value).

· Three operations are supported:

1. insertion – a normal queue insertion.

2. deleteMin – deletes the item in the queue with minimum priority value.

3. FindMin – searches for the item in the queue with minimum priority value.

· Worst case performance is faster the BST (O(log 2 N) in worst case)

· Less pointer overhead than with BST.

· FindMin operation is O(1).

· deleteMin operation is O(log 2 N).

· Insert is O(1) on average and O(log 2 N) in worst case.

· Basic priority queue with these three operations is called a binary heap.

Data Structure
Access is to
Comments

Stack
only to most recently inserted item, pop = O(1)
very, very fast

Queue
only to least recently inserted item, dequeue = O(1)
very, very fast

Linked List
any item
O(N)

Search Tree
any item by name or ranking, O(log 2 N)
average case; worst case is O(N)

Hash Table
any named item = O(1)
collision rate affects performance

Priority Queue
findMin = O(1)

deleteMin = O(log 2 N)
insert is O(1) on average and O(log 2 N) in worst case

Table summarizing the data structure of Chapter 6

This chapter is concerned primarily with introducing several general techniques which can be applied to problem solving. Different problems require different approaches in defining their solutions. To this end the algorithm designer needs to have a good understanding of many different techniques that can be applied toward solving the problem at hand.

This chapter introduces the problem solving techniques of recursion, divide and conquer, dynamic programming, and backtracking.

Recursion

· A method or function either directly or indirectly calls itself.

· Can be a powerful problem solving tool.

· Many algorithms and mathematical properties are naturally expressed in a recursive manner.

· Some programming languages are inherently recursive (Lisp, Scheme).

If properly done, a recursive function F calling itself, does not lead to an infinite cycle of the function calling itself. Instead, each recursive call is made on a different, generally simpler, instance of the problem.

A recursive function is a function which is defined in terms of itself. For example, it is common to express the factorial function, f(n) = n! where n is an integer, as the recursive function:

[image: image1.wmf]î

í

ì

>

-

£

=

1

n

)

1

n

(

f

n

1

n

1

)

n

(

f

This definition states that f(n) equals 1 whenever n is less than or equal to 1. For example, f(-3) = f(0) = f(1) = 1. However, when n is more than 1, f(n) is defined recursively, since the definition of f now contains an occurrence of f on the right side. Note that the use of f on the right side does not constitute a circular definition since the parameter of f on the right side is smaller than the one on the left side. For example, the from the definition we have: f(2) = 2f(1) and the definition also gives us f(1) = 1, substitution then provides the answer that f(2) = 2(1) = 2. Similarly, for f(3) the definition gives us: f(3) = 3f(2), from above we know that f(2) = 2f(1) and f(1) = 1, thus f(3) = 3f(2) = 3(2(f(1))) = 3(2(1))) = 6.

For a recursive definition of f(n) (assuming direct recursion) to be a complete specification of the function f, it must meet the following requirements:

· The definition must include a base component in which f(n) is defined directly (i.e., without recursion) for one or more values of n. For simplicity, we assume that the domain of f is the nonnegative integers and that the base covers the case 0 (n (k for some constant k. (Note: it is possible to have recursive definitions in which the base covers the case n (k instead, but these definitions occur infrequently.)

· In the recursive component all occurrences of f on the right side must have a parameter smaller than n so that repeated application of the recursive component transforms all occurrences of f on the right side to occurrences of f in the base component.

For the recursive function shown above, the base component is f(n) = 1 for n (1; the recursive component is f(n) = n f(n-1) and the parameter of f on the right hand side is (n-1) which is smaller than n. Repeated application of the recursive component transforms f(n-1) to f(n-2), f(n-3), …, and finally to f(1) which is included in the base component. For example, repeated application of the recursive component gives the following:

f(5) = 5f(4) = 20f(3) = 60f(2) = 120f(1) = 120

Notice how each application of the recursive component gets closer to the base. Finally, an application of the base component gives the answer that f(5) = 120.

Another well-known recursively defined function is that of the Fibonacci numbers.

1. Fibonacci numbers are named in honor of Leonardo Pisano (Leonardo of Pisa), the son of Bonaccio, (which in Latin is Filius Bonaccii) who discovered the series in 1202. The original problem that Fibonacci investigated (in the year 1202) was about how fast rabbits could breed in ideal circumstances. Suppose a newly-born pair of rabbits, one male, one female, are put in a field. Rabbits are able to mate at the age of one month so that at the end of its second month a female can produce another pair of rabbits. Suppose that our rabbits never die and that the female always produces one new pair (one male, one female) every month from the second month on. The puzzle that Fibonacci posed was... How many pairs will there be in one year?

2. At the end of the first month, they mate, but there is still one only 1 pair.

3. At the end of the second month the female produces a new pair, so now there are 2 pairs of rabbits in the field.

4. At the end of the third month, the original female produces a second pair, making 3 pairs in all in the field.

5. At the end of the fourth month, the original female has produced yet another new pair, the female born two months ago produces her first pair also, making 5 pairs.
6. What is the answer to this problem? [see the last page for the answer – but try to figure it out by yourself first!]
Fibonacci numbers appear in many unexpected areas. For example, on many plants, the number of petals is a Fibonacci number:

buttercups have 5 petals; lilies and iris have 3 petals; some delphiniums have 8; corn marigolds have 13 petals; some asters have 21 whereas daisies can be found with 34, 55 or even 89 petals, all Fibonacci numbers. Look at your own hand: You have ... 2 hands each of which has 5 fingers, each of which has 3 parts separated by 2 knuckles.

The Fibonacci numbers are defined as:

[image: image2.wmf]ï

î

ï

í

ì

³

-

+

-

=

=

=

1

n

for

)

2

n

(

f

)

1

n

(

f

1

n

for

1

0

n

for

0

)

n

(

f

Applying the definition, we see that this recursive function definition is complete. The fourth Fibonacci number is defined as:

[image: image3.wmf]3

)

0

(

f

2

)

1

(

f

3

)

0

(

f

)

1

(

f

)

1

(

f

)

0

(

f

)

1

(

f

)

0

(

f

)

1

(

f

)

1

(

f

)

2

(

f

)

2

(

f

)

3

(

f

)

4

(

f

=

+

=

+

+

+

+

=

+

+

+

=

+

=

Proofs by Mathematical Induction

Induction proofs are most often used to establish theorems that hold for positive integers. That is, you can establish the validity of a conjecture such as:

(n (0, and n (integer numbers, it is true that
[image: image4.wmf]å

=

=

n

0

i

i

 EMBED Equation.3 [image: image5.wmf]2

)

1

n

(

n

+

by showing that the conjecture is true for one or more base values of n (generally, n = 0 is sufficient – though not always). Once this base case is proven true, you assume that the conjecture is true for all values of n from the base case through m, where m is an arbitrary integer greater than or equal to the largest value of n covered in the base case; this is the inductive hypothesis. Finally, using the assumption of the inductive hypothesis you prove that the conjecture is true for the next value of n (i.e., m + 1). This final step is the induction step. To summarize: An induction proof consists of three parts:

1. Induction base: Show by example that the conjecture is true for one or more values of n. Typically n = 0 is used.

2. Induction Hypothesis: Assume the conjecture is true for all values of n between the base case value and some arbitrary integer m.

3. Induction Step: Prove that the conjecture is true (or possibly not true) when n = m +1.

Example: Prove by induction the conjecture from above.

Conjecture: (n (0, and n (integer numbers, it is true that
[image: image6.wmf]å

=

=

n

1

i

i

 EMBED Equation.3 [image: image7.wmf]2

)

1

n

(

n

+

Basis: n=1, by definition
[image: image8.wmf]å

=

=

n

1

i

i

 EMBED Equation.3 [image: image9.wmf]å

=

=

1

1

i

i

1, by substitution
[image: image10.wmf]å

=

=

1

1

i

i

 EMBED Equation.3 [image: image11.wmf]2

)

1

1

(

1

+

 =
[image: image12.wmf]2

2

 = 1

So the base case is true!

Inductive Hypothesis: n=k, assume
[image: image13.wmf]å

=

=

n

1

i

i

 EMBED Equation.3 [image: image14.wmf]2

)

1

k

(

k

+

 is true.

Inductive Step: prove conjecture is true for n = k+1

Must prove that:
[image: image15.wmf]å

+

=

=

1

k

1

i

i

 EMBED Equation.3 [image: image16.wmf]2

]

1

)

1

k

)[(

1

k

(

+

+

+

 =
[image: image17.wmf]2

)

2

k

)(

1

k

(

+

+

Note that
[image: image18.wmf]å

+

=

=

1

k

1

i

i

[image: image19.wmf]å

=

k

1

i

i

+ (k +1) =
[image: image20.wmf]2

)

1

k

(

k

+

 + (k + 1)

Rewriting gives:
[image: image21.wmf]2

k

k

2

+

 + k + 1 =
[image: image22.wmf]2

k

2

 +
[image: image23.wmf]2

k

 +
[image: image24.wmf]2

k

2

 +
[image: image25.wmf]2

2

[image: image26.wmf]2

k

2

 +
[image: image27.wmf]2

k

 +
[image: image28.wmf]2

k

2

 +
[image: image29.wmf]2

2

 =
[image: image30.wmf]2

2

k

3

k

2

+

+

 =
[image: image31.wmf]2

)

2

k

)(

1

k

(

+

+

Thus the proof is completed and our conjecture is true for all integer numbers.

At first glance, a proof by induction appears to be a circular proof, in that you establish a result by assuming that it is correct. However, an induction proof is not a circular proof for the same reason that a recursive definition is not circular. A correct proof by induction has an induction base that is similar to the base case of a recursive definition. The induction step proves the correctness using the correctness for smaller values of n. Repeated application of the induction step reduces the proof to one that is solely in terms of the base.

Induction proofs have their foundation in recursion, which can be a powerful problem solving tool.
Answer to Fibonacci’s Rabbit Puzzle

1. At the end of the first month, they mate, but there is still one only 1 pair. Total is 1 pair. Call them M1/F1.

2. At the start of the second month there is 1 pair. At the end of the second month the female F1 produces her first new pair (call them M2/F2 like before), so now there are 2 pairs of rabbits in the field. Total is 2 pairs. M1/F1, M2/F2

3. At the start of the third month there are 2 pairs [M1/F1, M2/F2]. At the end of the third month, the original female (F1) produces her second pair, making 3 pairs in the field. Total is 3 pairs. M1/F1, M2/F2, M3/F3

4. At the start of the fourth month there are 3 pairs. Two pairs will reproduce, one pair is not yet mature. Three pairs at start of month plus two pairs produced this month totals 5 pairs.

5. At the start of the fifth month there are 5 pairs. Three pairs will reproduce, two pairs are not yet mature. At the end of the fifth month, the original female (F1) produces her fourth new pair, the female born three months ago (F2) produces her second pair, and the female born two months ago (F3) produces her first pair. [5 pairs at start + 3 pairs produced] Total is 8 pairs.

The table below illustrates the complete process more succinctly.

A
B
C
D
E
F

month
total pairs at start of month
number of mature pairs at start of month
number of immature pairs
number of pairs produced by mature pairs
total number of pairs at end of month

(sum of columns B and E)

1
1
0
1
0
1

2
1
1
0
1
2

3
2
1
1
1
3

4
3
2
1
2
5

5
5
3
2
3
8

6
8
5
3
5
13

7
13
8
5
8
21

8
21
13
8
13
34

9
34
21
13
21
55

10
55
34
21
34
89

11
89
55
34
55
144

12
144
89
55
89
233

A

B

C

D

E

A general tree

F

GF

H

I

J

K

+

*

b

c

a

An Expression Tree

Expression: a + b * c

ply

leaf nodes

 pointer to parent

 data value

{pointers to children}

8

5

107

2

6

binary search tree

note ordering: left child is always smaller than parent and right child is always larger than parent

6

possible reorganization of the BST if node containing 5 is deleted

107

2

8

Example:

Consider the factorial function, n!.

	0! = 1

	n! = n * (n-1) * … * 3 * 2 *1

To determine 6! using this definition requires that we calculate:

6! = 6 * 5 * 4 * 3 * 2 * 1 = 720

Defining the factorial function recursively, we have:

		1 if n = 0	

fact (n) = 	1 if n = 1

		n * fact(n-1) if n >= 2

Now 6! = 6 * 5!

 = 6 * (5 * 4!)

 = 6 * (5 * (4 * 3!))

 = 6 * (5 * (4 * (3 * 2!)))

 = 6 * (5 * (4 * (3 * (2 * 1!))))

 = 6 * (5 * (4 * (3 * (2 * (1 * 0!)))))

 = 6 * 5 * 4 * 3 * 2 * 1 * 1

CHAPTER 7

Day 7 - 10

_1030269986.unknown

_1030270299.unknown

_1030270428.unknown

_1030273920.unknown

_1030274242.unknown

_1030271475.unknown

_1030270316.unknown

_1030270397.unknown

_1030270414.unknown

_1030270420.unknown

_1030270406.unknown

_1030270384.unknown

_1030270389.unknown

_1030270377.unknown

_1030270306.unknown

_1030270279.unknown

_1030270287.unknown

_1030270262.unknown

_1030270198.unknown

_1030269848.unknown

_1030269903.unknown

_1030269949.unknown

_1030269888.unknown

_1030269758.unknown

_1030269820.unknown

_1010858091.unknown

_1010858631.unknown

_1030269723.unknown

_1010858459.unknown

_1010858038.unknown

