COP 3503 – Computer Science II  –  CLASS NOTES  - DAY #4
A Closer Look at Linear, Quadratic, and Cubic Algorithms
In order to more closely examine the differences in running times of linear, quadratic, and cubic algorithms, consider the following problem:

Maximum Contiguous Subsequence Sum:  given (a possibly negative) integers A1, A2, …, AN, find (and identify the sequence corresponding to) the maximum value of 
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For the degenerate case when all of the integers are negative, the maximum contiguous subsequence sum is zero.

Example:  If input is: {-2, 11, -4, 13, -5, 2}.  Then the output is: 20.

       If the input is {1, -3, 4, -2, -1, 6}.  Then the output is 7.
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In the degenerative case, since the sum is defined as zero, the subsequence is an empty string.  An empty subsequence is contiguous and clearly, 0 > any negative number, so zero is the maximum contiguous subseqeunce sum.
The O(N3) Algorithm (brute force method - exhaustive search – see example)

Algorithm

int MCSS = 0, sum = 0, start = 0, end = 0;

for (i = 0; i < SIZE; i++) 

{for (j = 0; j < SIZE; j++) 

      {  sum = 0;

          for (k = i; k <= j; k++) 

               sum += a[k];

          if (sum > MCSS) 

          {   MCSS = sum;

               start = i;

               end = j;

          }

      }      

}

return MCSS;

Discussion of running time analysis

General Observation Analysis

Look at the three loops:

The i loop executes SIZE (or N) times.  The j loop executes SIZE-1 (or N-1) times.  The k loop executes SIZE-1 times in the worst case (when i = 0).  This gives a rough estimate that the algorithm is O(N3).

Precise Analysis Using Big-Oh Notation

In all cases the number of times that, sum += a[k], is executed is equal to the number of ordered triplets (i, j, k) where 1 ( i ( k ( j ( N2 (since i runs over the whole index, j runs from i to the end, and k runs from i to j).  Therefore, since  i, j, k, can each only assume 1 of n values, we know that the number of triplets must be less than n(n)(n) = N3 but i ( k ( j restricts this even further.  By combinatorics it can be proven that the number of ordered triplets is n(n+1)(n+2)/6.  Therefore, the algorithm is O(N3).



The O(N2) Algorithm (An improved algorithm – but still brute force)

Algorithm

int MCSS = 0, sum = 0, start = 0, end = 0;

for (i = 0; i < SIZE; i++) 

{for (j = i; j < SIZE; j++) 

      {  sum += a[j];

          if (sum > MCSS) 

          {   MCSS = sum;

               start = i;

               end = j;

          }

      }      

}

return MCSS;

Discussion of the technique and analysis

We would like to improve this algorithm to run in time better than O(N3).  To do this we need to remove a loop!  The question then becomes, “how do we remove one of the loops?”  In general, by looking for uncessary calculations, in this specific case, uncessary calculations are performed in the innerloop.  Notice that:

j                           j - 1

( Ak  = Aj +  ( Ak
k = i                    k = i

In other words,  the sum for the subsequence extending from i to j – 1 was just calculated – so calculating the sum of the sequence from i to j shouldn’t take long because all that is required is that you add one more term to the previous sum (i.e., add Aj ).  However, the cubic algorithm throws away all of this previous information and must recompute the entire sequence!

The O(N) Algorithm (A linear algorithm)

Discussion of the technique and analysis

To further streamline this algorithm from a quadratic one to a linear one will require the removal of yet another loop.  Getting rid of another loop will not be as simple as was the first loop removal.  The problem with the quadratic algorithm is that it is still an exhaustive search, we’ve simply reduced the cost of computing  the last subsequence down to a constant time (O(1)) compared with the linear time (O(N)) for this calculation in the cubic algorithm.  The only way to obtain a subquadratic bound for this algorithm is to narrowed the search space by eliminating from consideration a large number of subsequences that cannot possibly affect the maximum value.

How to eliminate subsequences from consideration

(1)

i                                    j   j+1                              q

A             < 0
B           Sj+1, q

C   < Sj+1, q

If A < 0 then C < B 

      j

If  ( Ar  < 0 and if q > j, then Ai…Aq is not the MCSS!

    r = i

So – if we test for sum < 0 and it is – then we can break out of the intter loop.  However, this is not sufficient for reducing the running time below quadratic!

(2)

If Ai…Aj is the MCSS, then the sums that border it (on either end) must have sums which are less than 0, otherwise they would have been included in the MCSS.

Once, again however, this has not reduced the complexity below quadratic!

(3)

       j

If  ( Ar  < 0 , then for any i ( p ( j and p( q, Ap…Aq is:

    r = i

(a) not the MCSS

(b)  or equal to a previously seen MCSS

This is it!  This says that if a negative MCSS is seen, we can break the loop and advance i to j+1.

Algorithm

int MCSS = 0, sum = 0, start = 0, end = 0, i = 0;

for (j = 0; j < SIZE; j++) 

      {  sum += a[j];

          if (sum > MCSS) 

          {   MCSS = sum;

               start = i;

               end = j;

          }

          else  if (sum < 0)

          {    i = j + 1;

                sum = 0;

          }

      }      

}

return MCSS;

Discussion of running time analysis

The j loop runs N times, therefore the algorithm is O(N).

The algorithm is more efficient but its correctness is less clear and requires proof of claims (2) and (3) [which are given in the proofs of Theorems 5.3].

MCSS Linear Algorithm Clarification

Point 1 – All subsequences which have a negative value will not be included in the MCSS as this would reduce the MCSS value.

Point 2 – All subsequences which border the MCSS have a negative sum – otherwise they would be included in the MCSS.

sequence

sum >0
sequence

sum <0
MCSS
sequence sum > 0 and greater than first and last sequence sums
sequence sum <0
sequence sum >0

Note:  Points 1 and 2, while they may be intuitively obvious (once you think about them at least) – they DO NOT reduce the running time of the MCSS algorithm below quadratic.  Instead there is a third point which, although less intuitive, does allow for a sub-quadratic algorithm.

Point 3 – Whenever a subsequence is encountered which has a negative sum – the next subsequence to examine can begin and the end of the subsequence which produced the negative sum.  In other words, there is no starting point in that subsequence which will generate a positive sum and thus, they can all be ignored.

The following examples should clarify this argument for the linear algorithm.

initial array

2
- 4
1
6
3

MCSS = 10

Comparison of Subsequences

starting point is index 1

2
- 4
1
6
3

MCSS = 2

2
- 4
1
6
3

MCSS = -2

2
- 4
1
6
3

MCSS = -1

2
- 4
1
6
3

MCSS = 5

2
- 4
1
6
3

MCSS = 8


starting point is index 2

2
- 4
1
6
3

MCSS = -4

2
- 4
1
6
3

MCSS = -3

2
- 4
1
6
3

MCSS = 3

2
- 4
1
6
3

MCSS = 6




starting point is index 3

2
- 4
1
6
3

MCSS = 1

2
- 4
1
6
3

MCSS = 7

2
- 4
1
6
3

MCSS = 10

� EMBED Equation.3  ���





Example: (second case)


1, 1+(-3) = -2, 1+(-3)+4 = 2, 1+(-3)+4+(-2) = 0, 1+(-3)+4+(-2)+(-1) = -1,


     1+(-3)+4+(-2)+(-1)+6 = 5


-3,  -3+4 = 1, -3+4+(-2) = -1, -3+4+(-2)+(-1) = -2, -3+4+(-2)+(-1)+6 = 4


4, 4+(-2) = 2, 4+(-2)+(-1) = 1, 4+(-2)+(-1)+6 = 7


-2, -2+(-1) = -3, -2+(-1)+6 = 3


-1, -1+6 = 5


6


Maximum contiguous subsequence has a value of 7 and involves the sequence of values 4, -2, -1, and 6.








A Simple Big-Oh Rule





A Big-Oh estimate of the running time is determined by multiplying the size of all the nested loops together.





Combinatorics Example


Suppose we have four values: 1, 2, 3, and 4.  Then the number of triplets that can be form where 1 ( i ( k ( j ( N is (N(N+1)(N+2))/6 = 120/6 = 20.  They are: (1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,2,2) (1,3,3) (1,4,4) (1,2,3) (1,2,4)


(1,3,4) (2,2,2) (2,2,3) (2,2,4) (2,3,3) (2,3,4) (2,4,4) (3,3,3) (3,3,4) (3,4,4)


and (4,4,4) for a total of 20
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