COP 3503 – Computer Science II – Spring 2000 - CLASS NOTES - DAY #24
Hashed Tables
· Hash tables (files) rely on hashing to perform insertion, deletion, and retrieval in constant time.

· Hashing functions are a mapping between a key value and a location in the table. The location is typically produced as an offset from the first position in the table.

· The key value is the data field on which retrieval, insertion, and deletion will be based. To be retrieved from, inserted to, or deleted from the file, an item’s key value must be specified.

· If the hashing function is a 1:1 function from key value to location then any (retrieval) can be done in constant time. If the hashing function is not 1:1, but M:1, then it is possible for more than key value to map to the same location in the hash table. This is called a collision.

· Typically, a restriction on the possible key values that may be used will be expected. Without any restrictions the size of the set of possible key values is infinite. [Domain is infinite and the range will normally be finite].

Hashing Methods

Method #1

Convert the key value (a string, let’s say) into an integer by adding the product of the character (its ASCII or Unicode value) and some number (say 128) raised to the position of the character. Note: 128 is used since the typical character set requires 7 bits in which to encode the character set (ASCII, not extended ASCII or Unicode). Since 27 = 128 this means that we can encode 128 different characters using the integer numbers 0 through 127.

Example: CSII = (C * 1283) + (S*1282) + (I*1281) + (I+1280)

This method has a serious potential for overflow! For example using ASCII code the value for the work “junk” is 224,229,227! A long string will generate a huge number. Also note that this technique is not a 1:1 mapping so collisions will be possible. Collision resolution will be discussed later.

To prevent calculating a number such as 128i directly for some applies to general polynomials can be used.

A general polynomial: A3X3 + A2X2 + A1X1 + A0X0

can be evaluated as: (((A3) X + A2) X + A1)X + A0
This has three distinct advantages over the earlier method. (1) A large intermediate result that will overflow is deferred until the end of the calculation, (2) only three multiplications and three additions are required to evaluate the polynomial, and (3) the entire calculation proceeds from left to right (exponentiation is from right to left).

A better solution is:

public int hash1 (string s, int tablesize)

{
int HashVal = 0;

for (int i = 0; i < s.length; i++)

HashVal = (HashVal * 128 + s.charAT(i)) % tablesize;

return HashVal;

}// end hash1

Note that the only improvement in this solution compared to the first is that modulo arithmetic has been applied. However, modulo operations are very expensive.

An even better solution:

Since Java allows overflow to occur (i.e., you don’t get an overflow error during runtime) and it overflows consistently across a given platform, so we can just allow the overflow to occur.

public int hash2 (string s, int tablesize)

{
int HashVal = 0;

for (int i = 0; i < s.length; i++)

HashVal = 37 *HashVal + s.charAT(i);

Hashval %= tablesize;

if (HashVal < 0)

HashVal += tablesize;

return HashVal;

}// end hash2

This algorithm is even better than hash1 since the modulo operation only occurs once and an acceptable value between 0 and tablesize is produced. The value of 37 has been used instead of the 128 because repeated multiplication by a factor of 128 will cause the most significant bits to overflow off the end too fast and the hash value will be more likely to cause a collision.

In general hash functions:

· must be easy to compute and fast so we don’t give up the advantage of O(1) look-up time.

· must distribute the key values across the entire range of the table to yield fewer collisions.

· faster hashing typically means a higher collision rate.

· lower collision rate typically means slower hashing.

Collision Resolution in Hash Tables

Techniques for resolving collisions include:

1. Ignore the collision. If the probability of collision is very low or the hash function is already too slow to add the overhead of collision resolution.

2. Create and utilize a collision resolution protocol. This adds complexity to hashed operations and causes extra implementation work.

Collision Resolution Protocols

Collision resolution protocols can range from fairly simple to very complex techniques. Among the simplest protocols are:

1. linear probing

2. quadratic probing

3. chaining

More advanced techniques such as multiple hash functions and bucketing can be applied when the table size is relatively large.

Linear Probing

Technique:
When a collision occurs sequentially search through the table from the point of the collision (using wrap-around searching – modulo arithmetic) until an empty location is found. Specifically, if the hash function returns a value H and location (cell) H is not empty then cell H+1 is attempted, followed by H+2, H+3, …, H+i (using wraparound).

Example: Suppose our hash function maps the letter A to location 0, B to 1, …, Z to 26. And we are hashing based upon the first letter of a person’s name. With the input sequence: Insert (Al), Insert (Bob), Insert (Betty), Insert (Carl), we can see how linear probing handles collisions.

location
value

[image: image1.wmf](

)

2

1

1

1

2

÷

ø

ö

ç

è

æ

l

-

+

[image: image2.wmf](

)

2

1

1

1

2

÷

ø

ö

ç

è

æ

l

-

+

0
Al

1
Bob

2
Betty

3
Carl

4

…

25

Details: Retrievals are handled by hashing the key and comparing the data at the location provided by the hash function. If the two values are not equal the location is incremented and the comparison is made again against the value in this new location. This is repeated until either the key value is found or an empty location is encountered. Deletion must be lazy. This entails marking the item as deleted but leaving it in place in the table (using a delete bit) without actually physically removing it from the table. This ensures that the look-up operation always works. Items which have been lazily deleted are only removed when they won’t break a chain valid items or when a new item can be inserted at this location which overwrites the deleted item.

Analysis:

Assuming that the probes are independent, the average number of locations (cells in the table) that will be examined in a single probe is: 1/(1-(). This comes simply from the fact that the probability that a location is empty is 1-(.

The above assumption is bad! In fact, linear probing causes a phenomenon called primary clustering. These clusters are blocks of occupied cells (locations). These blocks cause excessive attempts to resolve collisions. Taking this into account, the average number of cells that will need to be examined for an insertion into the hash table is:

For half-full tables, i.e., when ((0.5, this is an acceptable value of 2.5, but when (= 0.9, the search will require that 50 cells (on the average) be examined!

We need a solution that eliminates primary clustering. The following picture illustrates (sort of!) the long-term effect primary clustering has on the file density.

Quadratic Probing

Quadratic probing eliminates the problem of primary clustering caused by linear probing. The technique is similar to linear probing but the location increment is not 1. Specifically, if the hash function produces a hash value (a location or cell index) of H and the search at location H is unsuccessful, then the next location that is searched is H+12, followed by H+22, H+32, H+42, …, H+i2 (using wraparound as before).

Example: Suppose our hashing function is a simple mod operation on the size of the hash table. If the hash table is size 10 and the input sequence is: Insert(89), Insert (18), Insert (49), Insert (58), Insert (9). Then the hash table is filled as shown below:

location
value
description

0
49
H=0, collision, (H+1)mod 10 = 0

1

2
58
H=8, collision, (H+1)mod 10 collision, (H+4)mod 10 = 2

3
9
H=9, collision, (H+1)mod 10 collision, (H+4)mod 10 = 3

4

5

6

7

8
18
ok

9
89
ok

Why is quadratic probing better?

If the size of the hash table is a prime number and ((0.5 then all probes will be to different locations and an item can always be inserted and further, no location will be probed twice during an access.

However, at (= 0.5, linear probing is fairly good and the removal of primary clustering by use of quadratic probing will only save 0.5 probes for an average insertion and 0.1 probes for an average successful search. Quadratic probing provides an additional benefit in that it will be unlikely to encounter an excessively long probe as might be the case with linear probing. However, quadratic probing requires a multiplication (the i2 term) so an efficient algorithm for this multiplication will be necessary.

Given the previous value of Hi-1 it is possible to determine the next value, Hi without requiring the computation of i2. Assuming, that we still require a wraparound technique this new value of Hi is computed as follows:

Hi = Hi-1 + 2i (1 (mod tablesize)

This can be implemented as follows:

1. use an addition to increment i
2. use a left bit shift (1) to compute 2i

3. a subtraction to compute 2i(1

4. a second addition to increment the old value of 2i(1

5. finally a modulo operation if wraparound is needed

Example: Using the example from earlier, consider the steps to insert(58). Initially H0 = 58 mod 10 = 8 and collision results. Then i = 1 and H0 = 8. H1 = [H0 + 2(1) – 1]mod 10 = [8+1]mod 10 = 9. This too results in a collision so another value of H must be calculated as follows: H2 = [H1 + 2(2) – 1]mod 10 = [9+3]mod 10 = 2 which is empty, so insertion occurs at position 2 in the hash table.

Using the shift operation this example proceeds as (with numbers shown in binary form):

Initially H0 = 58 mod 10 = 8 and collision results. Then i = 0001 and H0 = 1000. H1 = [1000 + 0010 – 0001]mod 10 = [8+1]mod 10 = 9. This too results in a collision so another value of H must be calculated as follows: H2 = [1001 + 0100 – 0001]mod 10 = [9+3]mod 10 = 2 which is empty, so insertion occurs at position 2 in the hash table.

Quadratic probing eliminates primary clustering but introduces the problem of secondary clustering. Elements which hash to the same location will probe the same set of alternative locations. This however, is not a real concern. Simulations have shown that, in general, less than 0.5 additional probes are required per search, and this only occurs for high load factors. If secondary clustering does present a problem for a given application, there are techniques which will eliminate it altogether. One of the more popular techniques is called double hashing in which a second hash function is used to drive the collision resolution.

Chaining

· Maintain an array of linked lists at each hash addressable location.

· The hash function returns an index of a specific list.

· Insertions, deletions, and searches occur in that list.

· If the lists are kept short, then the potential performance bottleneck is eliminated.

· λ is calculated by dividing the total number of nodes N, by the number of lists which are maintained M.

· λ= N/M

· λ is no longer bounded by 1.0 but has an average value of 1.0.

· The expected number of probes for insertion and an unsuccessful search is: λ.

· The expected number of probes for a successful search is: 1 + λ/2.

Example: M = 6, N = 15, (= N/M = 15/6 = 2.5

Hash Address
List

0
(

1
(

2
(

3
(

4
(

5
(

· Each list referenced by the “hash table” is a singly-linked list (see previous notes for implementation details).

· The singly-linked lists shown above do not have a tail node. Would the use of a tail node be beneficial in this data structure? The answer is yes, it could help in two different ways! Notice that there is no implied order to the elements of a specific list. This is done since insertion into a hash table should be an O(1) operation. If the list is maintained in alphabetical order – then insertion will not be an O(1) operation and we would violate one of the specifications of the hash table data structure. This also happens in the implementation shown above since we have no way, other than traversing the list, of finding the end of the list. Therefore a “better” implementation is the one shown on the next page.

Hash Address
List

0
(

1
(

2
(

3
(

4
(

5
(

· Notice in this implementation of the hash table that even the hash addresses with no entries maintain an empty list (chain).

· The first way that the tail node improves the implementation is as follows: in typical implementations, the tail node will actually contain a data field which is usually set to the largest possible key value that will could be hashed. This eliminates null value comparisons in the code (replacing them with perhaps comparisons to MaxInt or something similar). Since each list has a logical end, there should be no problems associated with running off the end of a list.

· Also notice how wasteful of space it is to have a separate tail node for every list. In reality, all of these nodes will be condensed to a single node to which all lists will link. This is shown in the next diagram.

Hash Address
List

0
(

1
(

2
(

3
(

4
(

5
(

· Notice that this “better” implementation still does not provide O(1) insert time, unless we can identify (have a reference to) the node immediately preceding the tail node in any given list. For example, if we want to insert Alice into the first list, having a tail node only tells us where the end of the list is, not where the node next to the end of the list is! What do we do to get our required O(1) insert?

The answer has been available all along, and none of the “improvements” that we have made to our structure have done anything toward this end. Recall some of the issues we discussed when dealing with the implementation of linked lists. We stated that in a list without header and tail nodes that insertion at either end of the list was a “special case” that was different from inserting in the middle of the list. So we put header and tail nodes in to prevent the special cases from occurring. However, in our hash table structure, there has been a header node all along. It is embedded in the hash table itself as the reference to the chain for each hashable location. Therefore, to achieve O(1) insertion time, we simply perform ALL insertions at the head of the list rather than at the tail of the list. (A potential benefit of this is that the chain will contain the elements in the order of their arrival – i.e. they appear in entry order within each chain.) This again illustrates that you need to be aware of the various implementation issues for all of the data structures that are involved in any application. The final diagram illustrates the insertion of a newly hashed value into our hash table.

Hash Address
List

0
(

1
(

2
(

3
(

4
(

5
(

Hash tables can be used to implement insert and find operations in O(1) time, on the average. There are many implementation factors that can influence the performance of the hash table such as the load factor, the hash function itself, file size, input rates and distributions, as well as many other factors. It is important to pay attention to these details if you are to perform these operations in O(1) time.
Kris

Cris

Cyn

Calli

Carl

Jimi

Jane

Jack

Kristi

Al

Ann

Art

Ali

Bo

Art

Ali

Bo

Cris

Cyn

Calli

Carl

Jimi

Jane

Jack

Kristi

Al

Ann

Kris

Cindi

Jack

Jane

Jimi

Kristi

Kris

Bo

Carl

Calli

Cyn

Cindi

Cris

Ali

Art

Ann

Al

� EMBED Equation.3 ���

Definition

Load factor: The load factor of a probing hash table is the fraction of the table that is full. The load factor is represented by the symbol (, and generally, ranges from 0 (empty table) to 1 (full table).

should be in location 1 but a collision occurred moving it to location 2

should be in location 2 but a collision occurred moving it to location 3

Cindi

TAIL

TAIL

TAIL

TAIL

TAIL

TAIL

TAIL

The shaded areas indicate areas of the file that are occupied with records. The unshaded areas are unoccupied areas containing no information. Primary clustering tends to divide the file space into discrete clusters which further increases the probability of collision and tends only to expand each cluster rather than spread the information across the file space.

James

Bo

Ali

Art

Ann

Al

TAIL

Kristi

Jack

Jane

Jimi

Carl

Calli

Cyn

Cris

Kris

Cindi

Day 24 - 11

_1016969368.unknown

