COP 3503 – Computer Science II – CLASS NOTES - DAY #23
Huffman Coding Tree

public class HuffNode

{
protected boolean children;

protected char root;

protected HuffNode left;

protected HuffNode right;

public HuffNode ()

{
children = false;

root = null;

left = null;

right = null;

} // end constructor

public HuffNode (char in, HuffNode lef, HuffNode rig)

{
children = true;

root = in;

left = lef;

right = rig;

} // end constructor

} // end HuffNode

public class Hufflist

{
protected HuffNode head;

protected HuffNode current;

protected String answer;

public HuffList ()

{
head = new HuffNode ();

current = head;

answer = new String ();

} // end constructor

public void insertAll (char[] alpha)

{
for (int i = 0; i < 26; i++)

{
HuffNode temp = new HuffNode (alpha[i], null, null)

if ((i % 2) == 0)

{
current.left = temp;

} else
{

current.right= temp;

current = getNextParent ();

} //end else

} //end for

current = head;

} // end insertAll

public boolean find (HuffNode h, char c)

{
if (h.root == c) return true;

if (find (h.left, c))

{
answer = “0” + answer;

return true;

}

if (find (h.right, c))

{
answer = “1” + answer;

return true;

}

return false;

} // end find

} // end HuffList.

· Notes:
· assumes char[] alpha is a frequency ordering of the alphabet.

· after calling find the user reads a binary string from answer and resets the answer to the null string when ready to resume.

Level Order Tree Traversals

We have already examined the preorder, inorder, and postorder traversals of binary trees. Now we will focus on level order traversals. A depth-first traversal means that “traverse as deep as possible before you go wide”. In other words from a given node you go as deep as possible in the tree from that point prior to visiting any other node on the same ply as the initial node. A breadth-first traversal means that “traverse wide before you go deep”. In other words you visit all of the nodes on a given ply prior to visiting any of their siblings.

Depth-First Search

1. Algorithm:

2. Initialize a stack and push the first ply onto the stack (right to left order!).

3. Pop the stack and push the children of the popped node onto the stack in right to left order. Push nothing if the node is a leaf node.

a. Recursively perform step #2 above until:

b. the node is reached – then return that node.

c. the stack is exhausted – then return “not found”.

Example:

Consider the tree shown below with a call to depth-first(d).

Note: shows traversal order are tree links

1. tos

b
c
d

1. pop b

 tos

e
f
c
d

2. pop e

 tos

j
k
f
c
d

3. pop j

 tos

k
f
c
d

4.
5. pop k

 tos

f
c
d

6. pop f

 tos

c
d

7. pop c

 tos

d

8. pop d

 tos

return d;

Breadth-First Traversal

Algorithm:

1. Initialize a queue and enqueue the first ply in the queue in left-to-right order.

2. Dequeue an element and enqueue its children in the queue in left-to-right order.

a. Recursively perform step #2 until:

b. the node is reached – then return the node.

c. the queue is exhausted – then return “not found”.

Example:

Consider the tree shown below and a call to breadth-first(d).

Note: shows traversal order while shows tree structure

1.

 head tail

b
c
d

2. pop b

 head

 tail

c
d
e
f

3.pop c

 head

 tail

d
e
f

3. pop d

head tail

e
f

return d;

f

e

d

c

b

a

n

m

l

k

j

i

h

g

f

e

d

c

b

a

Day 23 - 5

