COP 3503 – Computer Science II – CLASS NOTES - DAY #22

TREES

Techniques for defining a tree

There are two basic techniques that can be used to define a tree.

1. Recursively: this allows for very simple algorithms to manipulate the tree.

2. Non-recursively: this allows for very straight-forward, easy and direct algorithms for manipulation of the tree. We did this in Chapter 6/7.

Non-recursive Definition

Tree: A tree is a set of nodes and a set of directed edges which connect pairs of nodes. It is a connected, cycle-free, directed graph.

Rooted Tree: A tree in which one node is specified to be the root, (call it node c). Every node (other than c), call it b is connected by exactly one edge to exactly one other node, call it p. Given this situation, p is b’s parent. Further, b is one of p’s children.
Path length: A unique path traverses from the root to each node in the tree. The number of edges along the path is the path length.

Height: The number of edges from a specific node to its deepest leaf.

Depth: The number of edges from the root to a specific node.

Siblings: Nodes which have the same parent.

Descendant: If there is a path from node a to node b then b is a descendant of a and a is an ancestor of b.

Proper descendant: If b is a descendant of a and a (b then b is a proper descendant of a and a is a proper ancestor of b.

The following diagrams illustrate the various properties of trees.

…

 …

There are x total nodes and thus x-1 total edges in the tree shown above. The depth of the tree to node c1 is 2.

Depth(1) = 1. Height(3) = 2, Height(2) = 0

Depth(root) = 0, Height(root) = 3

Node 3 is an ancestor of node 7. Node7 is a proper descendant of node 3.

Nodes 4 and 5 are siblings.

Recursive Definition

Basis: A tree is empty.

Recursive step: A tree consists of a root node and zero or more non-empty subtrees whose roots are connected to the root node.

Closure: Nothing else is a tree.

root

…

n subtrees (0 (n (()

Implementation

· The implementation must account for an unknown, potentially unbounded, and potentially widely varying number of children using some kind of data structure (such as a linked list) rather than explicit references from the node itself (this is too wasteful of space). This means that a node definition of: [data, chld1ptr, chld2ptr, chld3ptr, chld4ptr, …, chldnptr] won’t do!

· This is commonly done using a first child/next sibling technique in which the children of a node are maintained in a linked list of tree nodes.

· Each node keeps two references (pointers): one to its leftmost child (if it isn’t a leaf node) and one to its right sibling (if it isn’t the rightmost sibling).

· Using this technique the tree structure looks different than what you are used to seeing. Here edges that point downward are first child references, edges that go left to right are next sibling references, and null edges are not typically drawn since there are so many of them. The diagram on the next page illustrates this technique.

Given the conventional tree:

This corresponds to the following tree using the first child/next sibling technique.

Null pointers are shown in the example above for completeness only, typically they are omitted for clarity.

Java Implementation

public class TreeNode

{ protected Object data;

 protected Singly_Linked_List children;

 protected TreeNode sibling;

 private TreeNode () { } //defeat improper instantiation

 public TreeNode (Object x, TreeNode, r)

 { data = x;

 sibling = r;

 children = null; //children = new Singly_Linked_List(null)

 } //end constructor

 r

 null

 public TreeNode (Object x, Singly_Linked_List sll, TreeNode r)

 { data = x;

 children = sll;

 sibling = r;

 } //end constructor

r

header

 null

 public Node getChild ()

 { return this.children.current;

 } // end getChild

 public TreeNode gotoSibling ()

 { return this.sibling;

 } //end gotoSibling

 public Node getNextChild ()

 { return this.children.current.next;

 } //end getNtextChild

} //end TreeNode class

This class creates the following structure:

Binary Trees

· A special case of a general tree in which each node can have at most two children. Called a left child and a right child.

· Used for many applications such as expression trees, binary searching, Huffman coding, etc..

· Expression Trees: have a operator in the root of every subtree (all internal nodes), including the main root and every operand is a leaf node.
· Huffman Coding Trees: every alphabet symbol is stored in a leaf node and its coding sequence is obtained by following the path from the root node to the leaf. Typically a left link is assigned a “0” code and a right link is assigned a “1” code. Huffman coding is based upon frequency of occurrence for the various letters in the alphabet with more frequently occurring letters assigned to shorter codes thus saving significant amounts of space in data storage, message transmission, etc..
Example: Suppose that we have a four letter alphabet consisting of a, b, c, and d, and e only. To encode four letters requires 2 bits. Suppose that these are assigned as follows: a = 00, b = 01, c = 10, and d = 11. Now suppose that we have a sentence of these letters which is 15 characters long. This sentence will require 30 bits to encode. Suppose that we also have some information about the frequency of occurrence of each of our letters and know that “a” occurs most frequently, followed by b and so on. A Huffman coding tree is built as shown below with the most frequently occurring letters closest to the root.

 0 1

0 1

 0 1

Reading the new codes from the tree we have: a = 0, b = 10, c = 100, and d = 101. Now suppose our 15 character sentence contains 8 a’s, 4 b’s, 2 c’s, and 1 d. With the new code this sentence requires (8*1) + (4*2) + (2*3) + (1*3) bits = 8 + 8 + 6 + 3 = 25 bits. The original code required 30 bits so we have save (30-25)/30 = 16%.

Implementation

public class BinTreeNode

{ protected Object data;

 protected BinTreeNode left;

 protected BinTreeNode right;

 private BinTreeNode() { }

 public BinTreeNode (Object x, BinTreeNode l, BinTreeNode r)

 { data = x;

 left = l;

 right = r;

 } // end constructor

}// end BinTreeNode

BinaryTree implementation left as an exercise. Do this just like we did for the linked list classes, define a binary tree class, define a constructor, and then define some of the methods for operating on the binary tree.

How to Insert a Node

 Want to insert the left-child to the left of its parent and the right-child to the right of its parent. Common technique is to insert in order of arrival and always place element as close to the root as possible, given a choice. In other words do not arbitrarily make the tree taller.

 don’t insert here

Since trees are defined recursively, some methods can (and should) be written recursively.

public int Height ()

{ int l, r;

 if ((left = = null) && (right = = null))

return 0;

 return ((l = left.Height () >= (r = right.Height ())) ? l+1: r+1

} //end Height

Note: conditional statement available in both Java and C++ the form of this is:

predicate ? return if predicate = True

 : return if predicate = False;

Tree Traversals

Preorder: processed in order root/left-child/right-child

public void preorderTrav (BinTree)

{ if (root != null)

{ process (root); //assumed method

 preorderTrav(left);

 preorderTrav(right);

} //endif

} //end preorderTrav

Inorder: processed in order left-child/root/right-child

public void inorderTrav (BinTree)

{ if (root != null)

{ inorderTrav(left);

 process (root); //assumed method

 inorderTrav(right);

} //endif

} //end inorderTrav

Postorder: processed in order left-child/right-child/root

public void postorderTrav (BinTree)

{ if (root != null)

{ postorderTrav (left);

 postorderTrav (right);

 process (root); //assumed method

} //endif

} //end postorderTrav

Expressions

An infix expression represented as a tree can be evaluated with an inorder traversal of the tree.

public void getExp (BinTreeNode t)

{ (1) if (t == null) return;

 (2) if ((t.left != null)) & (t.right != null))

 System.out.print (“(“);

 (3) getEXP (t.left);

 (4) System.out.print (t.data);

 (5) getEXP (t.right);

 (6) if ((t.right.left == null) && (t.right.right == null))

 System.out.print (“)”);

} //end getEXP

Example: Consider the expression “ (a + ((b – c) * d)

 t

Trace: set t to root of the tree

 1. t != null

 2. t.left != null && t.right != null // so print “(“

 3. call getEXP(t.left)

// t now points to t.left – the node with “a”

1. t != null

2. t.left == null && t.right == null // so no print

3. call getEXP(t.left)

// t now points to t.left.left {which is null in this case}

1. t == null so return

4. print t.data // so “a” is printed

5. call getEXP(t.right)

1. t == null so return

4. System.out.print (t.data) // print out “+” the root node

5. call getEXP(t.right)

// t now point to t.right //node with “*”

1. t != null

2. t.left != null && t.right != null // so print “(“ output = “(a + (”

3. call getEXP(t.left)

//t now points to node with “-“

1. t != null

2. t.left != null && t.right != null // so print “(“

3. call getEXP(t.left)

// t now points to node containing “b”

1. t != null

2. t.left == null && t.right == null //so no print

3. call getEXP(t.left)

1. //t.left == null so return

4. System.out.print(t.data) //so print “b”

5. call getEXP(t.right)

1. //t.right == null so return

4. System.out.print(t.data) //so print “-“

5. call getEXP(t.right)

//t now points to node containing “c”

1. t != null

2. t.left ==null && t.right == null so no print

3. call getEXP(t.left)

1. //tleft == null so return

4. System.out.print(t.data) //so print “c”

5. call getEXP(t.right)

1. //t.right ==null so return

6. t.right.left!=null &&t.right.right!=null so no print

6. t.right.left==null && t.right.right ==null so print “)”

4. System.out.print(t.data) // so print “*”

5. getEXP(t.right)

//t now points to node containing “d”

1. t!=null

2. t.left == null && t.right==null so no print

3. getEXP(t.left)

1. t==null so return

4. System.out.print(t.data) // so print “d”

5. getEXP(t.right)

1. t == null so return

6. t.right.left != null &&t.right.right != null so no print

6. t.right.left == null && t.right.right == null so print “)”

6. t.right.left != null && t.right.right != null so no print

Practice Tree Traversals

On the next two pages are three binary trees that can be used for practicing the various tree traversal algorithms. You may have already discovered that binary tree traversals appear on the foundation exam with surprising regularity. The answers for the traversals are on the last page of the notes.

Tree #1

Tree #2

Tree #3

Practice Binary Tree Traversal Answers

Preorder: Visit node, visit left subtree, visit right subtree

Inorder: Visit left subtree, visit node, visit right subtree

Postorder: Visit left subtree, visit right subtree, visit node

Tree #1

Preorder: 40, 30, 10, 32, 35, 70, 60, 65, 90

Inorder: 10, 30, 32, 35, 40, 60, 65, 70, 90

Postorder: 10, 35, 32, 30, 65, 60, 90, 70, 40

 Tree #2

Preorder: 40, 30, 10, 5, 15, 32, 35, 70, 60, 65, 90, 95

Inorder: 5, 10, 15, 30, 32, 35, 40, 60, 65, 70, 90, 95

Postorder: 5, 15, 10, 35, 32, 30, 65, 60, 95, 90, 70, 40

 Tree #3

Preorder: 40, 30, 10, 5, 15, 13, 12, 32, 35, 70, 60, 65, 66, 67, 68, 90, 95

Inorder: 5, 10, 12, 13, 15, 30, 32, 35, 40, 60, 65, 66, 67, 68, 70, 90, 95

Postorder: 5, 12, 13, 15, 10, 35, 32, 30, 68, 67, 66, 65, 60, 95, 90, 70, 40

E

D

C

B

A

root

IF

JHF

HGF

GF

F

E

C

B

A

D

root

3

7

a

m

m

15

this is a Singly_Linked_List

(see Day 20 Notes)

m

bn

b1

b0

6

7

5

c

4

3

2

1

c

root

m

m

cm

c1

c0

bn

b1

b0

c

Note: A tree with n nodes has exactly n-1 edges since all nodes in the tree, except for the root, have exactly one edge leading to it.

GF

HGF

IF

JHF

FE

root

children

child 1

child n

 null

child 2

sub-tree with child1

as root

sub-tree with child2

as root

Chapter 17

data children sibling

 x

data children sibling

data children sibling

 x

data children sibling

data next

null

b

db

cb

root

root

2

2

1

1

c

b

d

-

*

a

+

40

30

70

60

65

90

10

32

35

65

35

90

60

32

10

70

30

40

5

15

95

95

15

5

65

35

90

60

32

10

70

30

40

13

12

66

67

68

Day 22 - 15

