COP 3503 – Computer Science II – CLASS NOTES - DAY #21
Doubly Linked Lists

· Better than singly linked list as they are bi-directional.

· Has both a header and a tail node (for the same reason that we added the header node to the singly linked list).

 null

 null

header

 tail

public class DLLNode

{
public Object data;

public DLLNode next;

public DLLNode prev;

private DLLNode () { } //defeats improper instantiation

public DLLNode (Object x) //constructor for isolated DLLNode

{
data = x;
//

prev = null;
//

next = null; // null

} //end constructor

public DLLNode (Object x, DLLNode n, DDLNode p)

//constructor for linked DLLNode

{
data = x;

next = n;

prev = p;

} //end constructor

} //end class DLLNode

 p

 n

Doubly Linked List Implementation in Java

public class Doubly_Linked_List

{
protected DLLNode header;

protected DLLNode tail;

protected DLLNode current;

public Doubly_Linked_List ()

{
header = new DLLNode(null);

tail = new DLLNode(null);

header.next = tail;

tail.prev = header;

} // end constructor

public void resetList ()

{
header.next = tail;

tail.prev = header;

current = header;

} //end resetList

public boolean isEmpty ()

{
return (header.next = = tail);

} // end isEmpty

public void gotoHeader ()

{
current = header;

} //end gotoHeader

public void gotoTail ()

{
current = tail;

} //end gotoTail

public void gotoFirst ()

{
current = header.next;

} //end gotoFirst

public void gotoLast ()

{
current = tail.prev;

} //end gotoLast

public void walkForward ()

{
current = current.next;

} // end walkForward

public void walkBackward ()

{
current = current.prev;

} //end walkBackward

public void insert (Object x) //inserts after current

 // new node inserted between current and current.next

{
if (current = = null)

System.out.println(“ERROR”);

else

{ DLLNode newN = new DLLNode(x, current.next, current);

 current.next.prev = newN;

 current.next = newN;

 current = newN;

} // end if-else

} // end insert

public void remove (DLLNode n)

//removes the node n located after node current in the list

{
if (current = = null)

System.out.println(“ERROR”);

else

{ n.prev.next = n.next;

 n.next.prev = n.prev;

 n = null;

} // end if-else

} // end remove

public Node find (Object x)

{
DLLNode forward = header;

DLLNode backward = tail;

while (forward != backward && forward.next != backward

&& !forward.next.data.equals (x)

&& !backward.prev.data.equals (x))

{ forward = forward.next;

 backward = backward.prev;

}

if (forward.next.data.equals(x))

current = forward;

else if (backward.prev.data.equals (x))

current = backward.prev.prev

else return null;

return current.next;

} // end find

public DLLNode get (Object x)

{
DLLNode temp = find (x);

// assume the user does something like the following after doing a find (x)

// if (current = = null)

// {
current = n;

//
System.out.print(x + “ Not Found”);

// }

return temp;

} // end get

} // end Singly_Linked_List

Details Of How It Works

Shown below is a diagram of how insert works:

list before insert:

 current

list after insert:

 current

 newN

Shown below is a diagram of how remove works (shown without header and tail nodes):

list before remove:

 current

 n

list after remove(B):

 current

 n

deallocate n

 Shown below are examples of how find works:

(A) find(B)

header

 tail

forward

 backward

header
 forward

backward
 tail

 current

returns: current.next

Note: a call to find(X) would return: null with current pointing at B and backward pointing at C.
Given our implementation of the doubly-linked list using both a header and a tail node that an empty list consists of two nodes as shown below (see the constructor for DLL).

null

null

 header

 tail

Multiply-Linked Lists

So far we have encountered list whose nodes consist of either one or two reference fields. In general, a node can contain n reference fields which will allow that node to be a member of up to n different logical lists simultaneously. The techniques for manipulating a multiply-linked list are the same as those for singly and doubly linked lists with the additional requirement that up to n different links will need to be maintained by any operation that affects the state of the structure. Additional care is required by the programmer to ensure that each logical list is properly maintained. Also note that, as with any of the linked lists we have seen thus far, each logical list within the multiply-linked list structure can be singly, doubly, and/or circularly linked and any of the implementation methods can be used in any of the logical lists.

I’ll add some code and examples here later.

Stay tuned.

 D

 C

 B

 A

 D

 C

 B

 A

 D

 C

 B

 A

 D

 C

 B

 A

 E

 A

 D

 D

 A

prev data = x next

 null

 x

 B

 A

Day 21 - 6

