COP 3503 – Computer Science II – CLASS NOTES - DAY #20 Supplement
Although the concept of linking is common to all linked lists, a number of other issues can affect the implementation of a linked list in different fashions. Many of the design considerations that we will mention can be applied to virtually any linked list. Depending upon the application at hand, one or more of these implementations will be an appropriate solution. Some of these design issues are discussed in the sections that follow.

· Header Object: Should the list have a special node that maintains the reference to the first actual node in the list? If this special node is used it is typically called a header node The advantage of this technique is that there is always a node which “represents” the list. Operations on the list must go “through” this header node in order to gain access to the list itself. If no header node is used, then the first node of the actual list must “represent” the list. This implies that an empty list is denoted by null. Another, more subtle advantage of the header node will be illustrated when we develop insert and delete methods . A simple explanation will suffice for now: the header node will prevent special case insertion and deletion operations from occurring and will thus streamline the code for these methods. A disadvantage of the header node is that the list will contain a node which is not really a part of the list. Sometimes however, this header node can be used for storing useful information about the remainder of the list, such as the number of nodes currently in the list, etc..
· List Termination: How should the list be terminated? One technique, which is very commonly used, is to have the reference field (the pointer) in the last node of the list refer to the special value null. A completely different technique, which has certain advantages, is to use a sentinel or special value in the last node of the list (and typically leave the last reference field undefined). As with the header node, the sentinel can be used to eliminate special cases for inserting and deleting within the linked list. This will be made clearer when we are actually looking at some of the linked list implementations.
· Single, Double, or Multiple Links: Single links (a singly linked list), permit the list to be traversed (walked) in only one direction. It is sometimes useful to be able to traverse the list in either a forward or backward direction and double links will be necessary. Double links however, will require more care on the programmers part to ensure that insertions and deletions to the list are properly handled. For more complex linking arrangements, multiple links may “enter” or “leave” a given node and care must be used by the programmer to ensure that the proper link is followed for a given situation.

· First and Last Link References: A characteristic of the list is that efficient (constant time) access to the elements is only possible at the ends of the list. To access an element in the middle of the list requires traversing all of the links in between and thus the time required to access an arbitrary node will depend upon the size of the list (the current number of nodes in the list). If we maintain a reference (pointer) only to the first node in the list, then access to the last node in the list will be the most time-consuming operation (it will be O(n) for an n node list). By maintaining references to both the first and last nodes in the list, constant time access will be achieved for both the first and last nodes in the list. In many situations, depending upon the application and the length of the list, intermediate references may be maintained in the list for constant time access to intermediate list elements as well.

· List Termination Revisited: Above we discussed some of the ways in which the terminal node of the list can be marked. The question becomes, does the list need to terminate at all? The answer is yes and no. Logically, the list must have a beginning and an end (although these might be the same), but physically, there is no requirement that the list terminate. This is the concept behind a circular list. In a singly-linked circular list, the reference field of the logical last node will refer (point to) the logical first node in the list. Thus, no matter where you are presently positioned within the list, you will be able to completely traverse the n nodes in the list and return to your starting point without requiring an intermediate restart to your search when the physical end of the list is encountered. Obviously, more care is required on the part of the programmer in constructing and maintaining such a list to prevent an infinite loop from occurring during list traversal (if sentinel or header nodes are not used).
The design considerations that were discussed above are by no means an exhaustive set of issues concerning the implementation of linked lists. The set of issues above merely reflects some of the important design considerations. There are many others that will need to be considered when implementing a linked list as part of a solution to a specific problem. For example, one of the features of a linked list, is that you have the ability to insert a new node (element) at some arbitrary point in the list in constant time. If you also consider maintaining the nodes in the list in some sequential order you will now have the ability to implement very fast algorithms for merging two collections (two lists) together.

· Self-Organizing Lists: Normal lists, like those we have typically dealt with, rely on the fact that the search requests are uniformly distributed across the elements of the list. In other words, any single element is no more likely to be the basis of a search than any other element in the list. What happens however, if this is not true? Suppose that the distribution of search requests is not uniform but skewed toward a single element. For example, suppose that we had a singly-linked list implemented with a reference only to the first node in the list (no reference to the last node in the list) and the distribution of search requests was such that from every 10 requests 9 were for the last element in the list. In this case, 90% of the searches would traverse the entire list before finding the search element in the last node. Thus, the average search time would be very close to n elements. On the other hand, if we knew that this would be the distribution of search requests, it would be much more sensible to place this highly desired element in the first position of the list so that 90% of our searches would be performed in constant time. This is the reasoning behind the implementation of self-organizing lists. A data structure that attempts to improve future performance based upon current usage is said to be self-organizing. Self-organizing lists present a completely different set of design considerations than do standard (non-self-organizing) lists. These lists are designed specifically to improve on the normally sequential nature of a search within a list by ensuring that elements which are the basis of frequent searches will be found quickly.

· Skip Lists: The major drawback to a linked list structure is the property of sequential access. This is an O(n) operation and can be quite time consuming for long lists. Keeping the elements of the list is order is of little help. Why? Why can’t we perform something similar to a binary search on a linked list? To see why we can’t do this with a linked list, note that we would need to have a reference into the middle of the list, something which is not typically there (but could be in certain cases):

[image: image1.png]70< top |
M 2
o 5470 87]
¥ Y ¥ -
2« 14~ 5470 83+——87<
. \ hilt . M TJ
2= 14<18= 42 5470 78<83<83= 87«94+
A sy Y S Ve Yoo ok ¥
<« 2= 6 <10=14+18+34<41 42 +52+54« 70«71« 78+83+83<8487 <9407« |

Even, if such a link exists, it would only be the first step in the search. To make the next step, we would need references into the middle of each subgroup of nodes:

[image: image2.png]Element Can Be Inserted Here

70 top

This would be required to continue until we reached the level of having references to the individual nodes:

[image: image3.png]Element Can Be Inserted Here > 70 top

54=70= 87= 1

[image: image4.png]70— Top
¥ ¥
Element Can Be Inserted Here — 5470 87—
Yot Y | ¥
iRl 5470 83— 87 ~—
\\ vy ¥ v ¥
42«54+ 707883 <83~ 87«94]
A\ opisgdy AA o AL (R

1 %2« 6<«10+14+18+34+4]«42<52«54+70«71 <7883 «83«84+87+94<97+

[image: image5.png]B) 54=70= 78 83+83= 87+94=

Ve g B [yotyaty Yoo

1«2<«6+10<14+18+34+38+«4]1=«42+52<5470<7] 78«83«83 84«87 +94=97 <

[image: image6.png]Element Can Be Inserted Here

70 top

It would be possible to create such a hierarchy of references, but the work required maintain the references as nodes were inserted and deleted from the underlying list would almost certainly overwhelm any benefits the references would provide.

The skip list data structure overcomes this problem by not being precise but rather relying on randomization and chance. The basic idea behind the skip list is quite simple. Elements are stored in an ordered list. Overlaying the list will be a hierarchy of other ordered lists. The nodes in these auxiliary lists will have an additional field that will point downward to a node in the next-level or ultimately to a node in the lowest level list that holds the element. The auxiliary lists are arranged so that each level will have, on average, approximately half of the number of elements of the list below it. A typical skip list might look like the one shown below.

[image: image9.png]B) 54=70= 78 83+83= 87+94=

Ve g B [yotyaty Yoo

1«2<«6+10<14+18+34+38+«4]1=«42+52<5470<7] 78«83«83 84«87 +94=97 <

The skip list maintains two internal data fields. The field bottom points to the linked list in which the lowest-level elements are stored. The variable top will point to the right-hand sentinel for the highest-level list. To illustrate how skip-lists are maintain, suppose that we wish to insert the element with value 38 into the list shown above. The “search” begins at the list referenced by top. A method (slidleft) traverses the list backwards until the value encountered in the list is smaller than the new element. This is shown in the next figure.

[image: image7.png]Element Can Be Inserted Here > 70 top

54=70= 87= 1

[image: image8.png]70— Top
¥ ¥
Element Can Be Inserted Here — 5470 87—
Yot Y | ¥
iRl 5470 83— 87 ~—
\\ vy ¥ v ¥
42«54+ 707883 <83~ 87«94]
A\ opisgdy AA o AL (R

1 %2« 6<«10+14+18+34+4]«42<52«54+70«71 <7883 «83«84+87+94<97+

However, since we are not at the bottom level of the structure, we drop down one level. Although we know where the element should be inserted in the upper list, the node found in the down link may not be the proper location for the insertion in the next level down. So once again, the slideleft operation will locate the proper location in this new level list. This is illustrated in the next figure.

This process must continue until the proper location at which to insert the new element is found in the bottommost list. The figure below illustrates where the actual insertion into the skip list will occur for this scenario.

The new element is inserted into the bottommost list. The next step is where randomization comes into play. As we return to the level above the bottommost list, we flip a coin (make a random selection). If the coin is heads, we insert a new link into the list. This link will point downward to the link for the field that was just inserted into the bottom list. If the insertion is performed (the coin was heads), the reference to the new link is returned, otherwise, null is returned. Shown below is the situation if the coin was heads.

At the next level up, we also flip a coin but only if the insertion at the level below resulted in a new link added to the structure. Since an insertion in the next level up requires that heads be tossed on two consecutive coin flips, the chance is only 25% that a link will be made. This process repeats all the way up the list. At the topmost level, if new nodes were generated all the way to the top, we would again, and for the final time, flip a coin. If heads were once again flipped, a new level in the hierarchy would be formed consisting of one link to the newly added element.

The skip list advantage over a conventional linked list is that searching, insertion, and deletion from the skip list all require, in general, O(log n) time compared to O(n) time for the conventional linked list.
� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

Day 20 Supplement - 3

_1047096929

_1047097326

_1047097658

_1047097133

_1047068400

