COP 3503 – Computer Science II – CLASS NOTES - DAY #20

General Characteristics

· Allow general access (i.e., not constrained to the beginning or end of the list as with a stack or a queue).

· Consists of dynamically allocated nodes (containing both a data section and a reference section) that are connected together.

Singly Linked List

· Each node contains a reference to the “next” node in the list.

· The last node in the list contains a reference to null, indicating that it is the last node in the list.

· Movement through the list is uni-directional, i.e., one-way.

 null

 head

· Recall that the basic operations that are needed on a linked list are: insert, delete, and find at the minimum, but “helper” operations are extremely useful.

Java Implementation

//definition of a node class

public class Node

{
public Object data;

public Node next;

private Node () { } //defeats improper instantiation

public Node (Object x) //constructor for Node alpha = new Node (x);

{
data = x;

next = null;

} //end constructor

public Node (Object x, Node n) //for Node beta = new Node (x, alpha);

{
data = x;

next = n;

} //end constructor

} //end class Node

 n

Single Linked List Implementation in Java

public class Singly_Linked_List

{
private Node header;

private Node current;

public Singly_Linked_List ()

{
header = new Node(null, null);

gotoHeader ();

} // end constructor

// NOTE: header eliminates the special case for insertion as

// now all nodes have at least one node in front of them.

public void resetList ()

{
header.next = null;

} //end resetList

public boolean isEmpty ()

{
return (header.next = = null);

} // end isEmpty

public void gotoHeader ()

{
current = header;

} //end gotoHeader

public void gotoFirst ()

{
current = header.next;

} //end gotoFirst

public void walkForward ()

{
current = current.next;

} // end walkForward

public void insert (Object x)

 // new node inserted between current and current.next

{
if (current = = null)

System.out.println(“ERROR”);

else

{ Node newN = new Node(x, current.next);

 current.next = newN;

 current = newN;

} // end if-else

} // end insert

public void remove (Node n) //removes the node after node n in the list

{
if (current = = null)

System.out.println(“ERROR”);

else

{ Node temp = current.next;

 n.next = temp;

 current = n;

} // end if-else

} // end remove

public Node find (Object x)

{
Node finder = header;

Node temp = header;

while (finder.next != null && !finder.next.data.equals (x))

{ temp = finder;

 finder = finder.next;

}

current = finder.next;

return temp.next;

} // end find

public Node get (Object x)

{
Node n = find (x);

// assume the user does something like the following after doing a find (x)

// if (current = = null)

// {
current = n;

//
System.out.print(x + “ Not Found”);

// }

return current;

} // end get

} // end Singly_Linked_List

Details Of How It Works

Shown below is a diagram of how insert works:

list before insert:

(((

 (((

 current

list after insert:

(((

 (((

 current

 newN

Shown below is a diagram of how remove works:

list before remove:

 current
 temp

list after remove:

 current

 temp

Shown below are diagrams which illustrate how find works:

Assume this initial list for all cases:

 null

 header

 current

Case #1: find (B)

 null

header

finder

temp

header
finder

 current

temp

Note: Reference to node containing “A” is returned

Case #2: find (D)

header

temp

finder

 header
 finder

 temp

 header
 temp

 finder

 header

 temp

 finder

At this point finder.next = null so the loop ends and a reference to the node containing “C” is returned (temp.next)

A

B

C

A

D

E

D

A

A

B

C

D

D

C

B

A

null

C

B

A

null

null

C

C

B

A

B

A

null

C

B

A

null

C

B

A

null

C

B

A

null

C

B

A

x

null

x

Linked Lists – Chapter 16

Day 20 - 4

