COP 3503 – Computer Science II – Spring 2000 - CLASS NOTES - DAY #19

Stacks and Queues

Recall from our earlier discussions of stacks and queues that the operations defined on these data structures are expected to take O(1) time (constant time). For both of these data structures there are two basic methods for implementation that will yield constant time operations. The first technique is to store the data items contiguously in an array. The second technique is to store the items non-contiguously in a linked list.

Array Implementations
Stacks

Focusing on stacks exclusively for the moment, we have previously seen that the static implementation of a stack is sufficient, if the size of the stack will never exceed the predetermined maximum size of the array which is used to implement the stack. If this is the case, the push() and pop() operations will require O(1) time. If the stack should ever reach the capacity of the array, then the next push() operation will require a time which is not constant since the array will now need to be expanded, which is not a constant time operation. The time required to expand the underlying array can be amortized over each push() operation which will have the effect of ensuring each operation can be performed in O(1) time but with a slight increase in the actual time for each operation.

Recall that an array-based implementation of a stack requires an array stack and a single integer variable. The integer tos (top_of_stack) is the index of the topmost element in the stack at any point in time. When tos == (1, the stack is empty. To push a new element new onto the stack the value of tos is incremented and the new stack element is placed onto the top of the stack: stack[++tos] = new. The pop operation is performed by retrieving the top element of the stack and decrementing the value of tos: element = stack[tos((].

Array-based Stack Implementation
//Implements a generic stack class

public class AStack

{
final static int SIZE = 100; //size of all instantiated stacks

Object[] elements; //the underlying array of the stack elements

int tos; // the top of stack “pointer”

//instantiate a new stack

public AStack()

{
elements = new Object[SIZE];

tos = -1;

}

//return the top element of the stack – if one exists

public Object Top()

{
if (!Empty())

return elements[tos];

else

return null;

}

//pop the top element of the stack – if one exists

public Object Pop()

{
if (!Empty())

return elements[tos--];

else

return null;

}

//push an element onto the stack if it is not full – otherwise return false

public Boolean Push(Object newone)

{
if (!Full())

{
elements[++tos] = newone;

return true;

}

else

return false;

}

//return true if the stack is empty – otherwise return false

public boolean Empty()

{
if (tos == -1)

return true;

else

return false;

}

//return true if the stack is full – otherwise return false

public Boolean Full()

{
if (tail == SIZE – 1)

return true;

else

return false;

}

public static void main (String[] args)

{
Integer n = new Integer(38);

Integer m = new Integer(39);

String alpha = new String(“Kristy”);

String beta = new String(“Suzi”);

String gamma = new String(“Bill”);

AStack one = new AStack(); //instantiate a new stack called one

one.Push(beta); //puts “Suzi” onto the stack

System.out.println((String)one.Top()); //prints out “Suzi”

one.Pop(); //remove “Suzi” from the stack

one.Push(alpha); //put “Kristy” onto the stack

one.Push(gamma); //put “Bill” onto the stack

one.Push(m);
//stack contains: 39/Bill/Kristy from top to bottom

System.out.println((Integer)one.Pop()); //prints 39

System.out.println((String)one.Pop()); //prints Bill

System.out.println((String)one.Pop()); //prints Kristy

}

} //end AStack

Queues
Considering queues, a slightly different problem arises, in that the implementation of the dequeue() operation can be very expensive in terms of time. As before, we expect that the enqueue() and dequeue() operations require constant time. A simple array based implementation for a queue will always placed the head element of the queue in position 0 of the underlying array. This will require each dequeue() operation to shift the entire remaining contents of the queue one position to the left (decrement index by 1). With this implementation the enqueue operation is: queue[++tail] = element. While this is certainly straightforward, the dequeue operation is not as simple. When the element at the head of the queue is removed the element one behind it (position-wise) must be moved up into the head position and the element in the 3rd position moved into the 2nd position, the element in the 4th position moved to the 3rd position, and so on. Thus, the dequeue operation will require than n-1 elements be moved (where n is the size of the queue). This violates our condition that the operations on the queue be performed in constant time. Thus, the dequeue() operation becomes an O(n) operation. This problem can be solved by allowing the head element of the queue to move (it is not always in array position 0). This will require one additional integer variable to represent the current size of the queue. An empty queue will require that tail = head –1. This technique however, introduces a different type of problem. No matter how large the original array, say it is of size n, after n enqueue operations have been performed, the queue will appear full even though it may contain only a single element! See the diagram below for an explanation of this phenomenon.

	
	
	3
	6
	9
	12

 head

 tail

The queue after a sequence of enqueue() and dequeue() operations.

What was the sequence of operations that left the queue in the state shown above? Clearly, since the head only moves when a dequeue() operation occurs and tail moves only when an enqueue() operation is performed – it must be that 6 enqueue() operations were performed and 2 dequeue() operations were performed. Can you tell in what order this 8 operations were performed? Examining only the queue in its current state does not provide enough information to answer this question. A number of different scenarios could have produced the queue shown above. Notice however, that now the queue appears “full”, even though there are two locations in the array which are unoccupied. It is important ot note here, that doubling the size of the array will not alleviate this problem as it did in the case of the stack. Doubling the size of the array here merely prolongs the inevitable. Regardless of the size of the array, after n dequeue() operations, the queue will appear full. To solve this problem requires a wraparound in which whenever either the head or tail reach the end of the array, it is reset to the beginning of the array, in a circular manner. Even with this fix, there is still the problem that the queue might actually fill up the array and thus a doubling of the underlying array size would be required. Notice however, that the copying of the elements from the “old” queue into the “new” queue is not as simple as the stack case because the “head” and the “tail” are not in fixed locations – so a simple copy of all of the array will not work. As before, the cost of doubling the queue can be amortized over the sequence of enqueue() operations.

Array-based Queue Implementation
//Implements a generic queue class – using first case where head is always at //position 0 – you try an design the implementation for the wraparound case.

public class AQueue

{
final static int SIZE = 100; //size of all instantiated queues

Object[] elements; //the underlying array of the queue elements

int head; // the “pointer” to the head of the queue

int tail; //the “pointer” to the tail of the queue

//instantiate a new queue

public AQueue()

{
elements = new Object[SIZE];

head = 0;

tail = -1;

}

//return the element at the head of the queue – if one exists

public Object First()

{
if (!Empty())

return elements[head];

else

return null;

}

//remove the element from the head of the queue – if one exists

public Object Dequeue()

{
Integer i;

Object temp;

if (!Empty())

{
return elements[head];

for (i=0; i<tail; i++) //shift all queue elements to the left

elements[i] = elements[i+1];

tail--; //move the tail “pointer” to the left as well

}

else

return null;

}

//insert an element onto the queue’s tail if possible – otherwise return false

public Boolean Enqueue(Object newone)

{
if (!Full())

{
elements[++tail] = newone;

return true;

}

else

return false;

}

//return true if the queue is empty – otherwise return false

public boolean Empty()

{
if (tail == -1)

return true;

else

return false;

}

//return true if the queue is full – otherwise return false

public Boolean Full()

{
if (tos == SIZE – 1)

return true;

else

return false;

}

public static void main (String[] args)

{
Integer n = new Integer(38);

Integer m = new Integer(39);

String alpha = new String(“Kristy”);

String beta = new String(“Suzi”);

String gamma = new String(“Bill”);

AQueue two = new AQueue(); //instantiate a new queue called two

two.Enqueue(beta); //puts “Suzi” onto the queue

System.out.println((String)two.First()); //prints out “Suzi”

two.Dequeue(); //remove “Suzi” from the queue

two.Enqueue(alpha); //put “Kristy” onto the queue

two.Enqueue(gamma); //put “Bill” onto the queue

two.Enqueue(m);
//queue contains: Kristy/Bill/39

System.out.println((Integer)two.Dequeue()); //prints Kristy

System.out.println((String)two.Dequeue()); //prints Bill

System.out.println((String)two.Dequeue()); //39

}

} //end AQueue

Chapter 15 – Stacks and Queues

Part IV - Implementations

Day 19 - 7

