COP 3503 – Computer Science II – CLASS NOTES - DAY #18
Expression Trees

Expression trees are a useful technique for representing and evaluating expressions. The leaves of an expression tree represent the operands of the expression which may be either constants or variables. The internal nodes represent the operations embedded in the expression. Most operations are binary operations and thus most internal nodes will have two children, however, this is not always the case. Unary operators, such as unary minus, will have only a single child node representing the single operand of such an operator. Other operations may be tertiary, quadary, etc. and such operation nodes will have three or more child nodes. An expression tree T is evaluated by applying the operator in the root node to values obtained through recursive evaluation of the left and right subtrees. Shown below is an expression tree which represents the expression (a+b)*(c(d):

Evaluation of the expression tree shown above produced the expression: ((a+b)*(c(d)). Note that this is an overly parenthesized infix expression as a result of the recursive production of a parenthesized left sub-expression followed by the operator in the root node followed by a recursively generated parenthesized right sub-expression. The traversal of the tree that produced this expression is called an inorder traversal and occurred by recursively traversing the left sub-tree followed by the root followed by the right sub-tree.

Specific Traversal Algorithms to Convert Expressions

The following algorithms convert infix expressions to either prefix or postfix expressions.

A preorder expression tree traversal generates a preorder expression if the expression tree represents a valid inorder expression. The example below illustrates this process.

Example: Consider the infix expression tree shown earlier in this set of notes which represents the expression (a+b)*(c(d). The prefix form of this expression as generated by a preorder traversal of the tree is: * +a b (c d. Generated as follows:

print *, traverse left, print +, traverse left, print a, traverse right, print b, traverse right, print (, traverse left, print c, traverse right, print d, end.

A postorder expression tree traversal generates a postfix expression if the expression tree represents a valid inorder expression. The example below illustrates this process.

Example: Consider the infix expression tree shown earlier in this set of notes which represents the expression (a+b)*(c(d). The postfix form of this expression as generated by a postorder traversal of the tree is: a b + c d (*. Generated as follows: traverse left, traverse left, print a, traverse right, print b, print +, traverse right, traverse left, print c, traverse right, print d, print (, print *, end.

Building an Expression Tree from an Infix Expression

Since it is easy to convert an infix expression to a postfix expression, what we need to be able to do, as far as the compiler is concerned, is to generate the expression tree from the postfix expression. This is also fairly simple to do as the algorithm and example below illustrate.

Example - Assume that we have the postfix expression a b + c d (/ (the infix form is (a + b) / (c (d)).

Evaluation is as follows:

1. push a, push b, “see” + so pop b (right operand), then pop a (left operand), finally push new tree (a b +) [form is: left sub-tree, right sub-tree, root].

2. push c, push d, “see” (so pop d (right operand), then pop c (left operand), finally push new tree (c d ().

3. “see” /, pop (c d () (right operand), then pop (a b +) (left operand), push new tree ((a b +) (c d () /).

Example – Assume that we have the postfix expression a b ^ c d / + (the infix form of this expression is a ^ b + c / d).

Evaluation is as follows:

1. push a, push b, “see” ^ so pop b (right operand), then pop a (left operand), finally push new tree (a b ^).

2. push c, push d, “see” / so pop d (right operand), then pop c (left operand), finally push new tree (c d /).

3. “see” +, pop (c d /) (the right operand), then pop (a b ^) (the left operand), push new tree ((a b ^) (c d /) +).

Stack and Queue Implementations

Stacks

Basically all that is needed is an array and a single integer variable to indicate the current position of the top of the stack within the array.

Implementation

1. Initialize an array named stack and an integer named top_of_stack or tos for short with an initial value of –1 (to indicate an initially empty stack).

2. Push operation is defined as: stack[++tos] = item;

3. Pop operation is defined as: thing = stack[tos--];

4. Is_empty operation is defined as: return (tos = = -1)

Object-oriented Implementation

public class stack_A

{
private Object stack[];

private int tos = -1;

public stack_A()

{
stack = new Object [10];

} // end default constructor

public boolean is_empty()

{
return (tos = = -1);

} // end is_empty

public void push (Object x)

{
stack[++tos] = x;

} //end push

public Object pop()

{
return Stack[tos--];

} // end pop

} // end Stack_A

Problems with this implementation: has no full stack checking, no memory management and it is not dynamic.

What happens when the stack gets full and its implementation is not dynamic? Answer: you need to increase the size of the stack from say N to N*2 or something. To do this requires that the items currently in the stack be moved (copied into the new larger stack) into the their proper positions in the new stack. This means that for a stack of size N, the worst case scenario requires 1 out of every N pushes take O(N) time (the time required to move the old stack into the new stack). This is problem can be handled in Java with the Vector class which allows dynamic resizing of the underlying array.

To resize the “stack” without using dynamic memory you must do the following:

doubleArray()

{
Object temp[] = new Object[Stack.length]

for (int i = 0; i < Stack.length; i++)

temp[i] = stack[i]; // copy the stack contents

stack = new Object[(temp.length*2)];

for(int j = 0; j < temp.length; j++)

stack[j] = temp[j];

} //end doubleArray

This is the code that requires, in the worst case, 1 out of every N pushes to require O(N) time.

*

+

(

a

b

c

d

Tree Traversal to Produce Infix Expressions

Recursively produce the left sub-expression.

Print out the root node.

Recursively produce the right sub-expression.

General Postorder Tree Traversal

Recursively traverse the left sub-tree.

Recursively traverse the right sub-tree.

Visit the root node.

General Inorder Tree Traversal

Recursively traverse the left sub-tree.

Visit the root node.

Recursively traverse the right sub-tree.

General Preorder Tree Traversal

Visit the root node.

Recursively traverse the left sub-tree.

Recursively traverse the right sub-tree.

Tree Traversal to Convert Infix Expressions To Prefix

Print out the root node.

Recursively produce the left sub-expression.

Recursively produce the right sub-expression.

Tree Traversal to Convert Infix Expressions To Postfix

Recursively produce the left sub-expression.

Recursively produce the right sub-expression.

Print out the root node.

Algorithm to Produce Expression Trees from Postfix Expressions

Maintain a stack of trees (actually references to trees, i.e. pointers).

Whenever an operand is “seen” in the expression – create a single node tree and push it onto the stack.

Whenever an operator is “seen” in the expression – pop the top two entries on the stack. The first tree popped is the right node and the second tree popped is the left node of a new tree where the operator is the root node of this new tree. Finally, push the new tree onto the stack.

At the end of the input, there will be one entry on the stack which is the entire expression.

a

a b

(a b +)

(a b +) c

(a b +) (c d ()

((a b +) (c d () /)

(a b +) c d

Day 18 - 6

