COP 3503 – Computer Science II – CLASS NOTES - DAY #17
PART III - APPLICATIONS
Chapter 11 – Stacks and Compilers

Stacks are a commonly used data structure in compilers. We will examine two of the basic uses of the stack data structure in a compiler, (1) basic syntax checking operations and (2) operator precedence parsing.

Basic Syntax Checking

Common programmer errors lead to a situation where the source code cannot be properly interpreted by the compiler to convert the source code into object code. Common errors include: too many opening parentheses, too many closing parentheses, symbol mismatch (i.e., expected) saw }). The order of appearance of each symbol is important, simply counting the number of occurrences of each symbol is not sufficient for handling the problem as [(a)] is legal but [(a]) clearly is not. The symbols must be properly balanced in terms of their order of appearance. A basic algorithm for checking symbol balance is shown below:

Stack calculators

1 + 2 * 3 = 7 and NOT 9

1. Expression Types

2. Infix: Binary operators have operands to the left and the right. Such as leftoperand operator rightoperand
3. Postfix: Operand string appears first followed by an operator string. Such as leftoperand rightoperand operator
4. Prefix: Operator string preceded the operand string. Such as

operator leftoperand rightoperand

Example – consider the postfix expression: 1 2 3 * +

“see 1” - push 1, “see 2” - push 2, “see 3” - push 3 [stack = 1 2 3]

“see *” - pop 3, pop 2, evaluate 3 * 2 = 6 and push 6 [stack = 1 6]

“see +” - pop 1, pop 6, evaluate 6 + 1 = 7 and push 7 [stack = 7]

end – result = 7

Example 2 – consider the postfix expression: 7 4 2 * -

“see 7” – push 7, “see 4” – push 4, “see 2” – push 2 [stack = 7 4 2]

“see *” – pop 2, pop 4, evalulate 2 * 4 = 8, push 8 [stack = 7 8]

“see –“ – pop 7, pop 8, evaluate 7 – 8 = -1, push –1 [stack = -1]

end – result = -1

Infix to Postfix Conversion

This is an operator precedence parsing algorithm. Consider the following series of examples:

1. 1+2*3^4 (infix) is equivalent to 1 2 3 4 ^ * + (postfix)

2. Note: the operands are in the same order in both forms and contiguous in the postfix form, the operators are reversed due to their precedence.

3. 2^5-1 (infix) is equivalent to 2 5 ^ 1 – (postfix)

4. Note: the operands are in the correct order but no longer contiguous and the operators are in the original order.

5. 3*2^5-1 (infix) = 3 2 5 ^ * 1 – (postfix)

6. Note: the operands are in the same order but not contiguous and the operators are in some permuted order.

7. 2+3+4 (infix) = 2 3 + 4 + (postfix)

2^3^4 (infix) = 2 3 4 ^ ^ (postifx)

2(3+4 (infix) = 2 3 – 4 + (postfix)

8. Note: associativity matters when operators have the same precedence. In the first case (left associativity) the input + has lower precedence than the + on the stack. In the second case (right associativity) the input ^ has a higher precedence than the stack ^

9. Parentheses – push opening (left) parentheses. When a closing (right) parenthese is seen the operator stack is popped until a left parenthese is popped from the stack. Example: (2(3)*4 [infix] is equivalent to 2 3 (4 * [postfix]. Similarly, 2(3*4 [infix] is equivalent to 2 3 4 * ([postfix]

Shown below is an algorithm for an operator precedence parser.

Example: Consider the infix expression 1 + 2 * 3 ^ 4. Converted to postifx and the output of our algorithm should produce: 1 2 3 4 ^ * +.

Stack contents will be [+ * ^] with ^ at the top of the stack.

1 = operand – output immediately

+ = operator – push onto stack, stack = [+]

2 = operand – output immediately

'* = operator – pop +, + < * so push +, push *, stack = [+ *]

3 = operand – output immediately

^ = operator – pop *, * < ^ so push *, push ^, stack = [+ * ^]

Example: 3 * 2 ^ 5 – 1 [infix] = 3 2 5 ^ * 1 – [postfix]

Example: (3 + 2) ^ 5 – 1 * 9 / 2 [infix] = 3 2 + 5 ^ 1 9 2 / * - [postfix]

Example: (2 ^ 5 + 6) ^ 3 / 9 ^ 2 ^ 1 [infix] = 2 5 ^ 6 + 3 ^ 9 2 1 ^ ^ / [postfix]

Simple Algorithm for Checking Symbol Balance

1 – Make an empty stack.

2 – Read symbols until the end of the file.

	a – if the symbol is an opening symbol – push it onto the stack.

	b – if the symbol is a closing symbol and the stack is empty – return error.

c – otherwise, pop the stack. if the symbol does not match the popped symbol – report an error.

3 – If the stack is not empty at EOF – return an error.

Example –

Consider the following source code:

public class foo{

	private bar;

	public static void main (string args[]) {

	yaddy();

	a[1] = a[2] * bar + yaddy());}

}

	

stack contents during “parsing”

1) read { (push)	stack = [{]

2) read ((push)	stack = [({]

3) read [(push)	stack = [[({]

4) read] (pop)	stack = [({]

5) read) (pop)	stack = [{]

6) read { (push)	stack = [{ {]

7) read ((push)	stack = [({ {]

8) read) (pop)	stack = [{ {]

9) read [(push)	stack = [[{ {]

10) read] (pop) 	stack = [{ {]

11) read [(push)	stack = [[{ {]

12) read] (pop)	stack = [{ {]

13) read ((push)	stack = [({ {]

14) read ((push)	stack = [(({ {]

15) read) (pop)	stack = [({ {]

16) read) (pop)	stack = [{ {]

17) read } (pop)	stack = [{]

18) read } (pop)	stack = []

(stack empty at EOF - success!

Example – Lisp source code

(defun func1 (x list)

	(cond

		((eq x `1) (car list))

		((not (and x list))(cdr list)))

)

)

error – too many)

Algorithm to evaluate Postfix expressions

push all operands.

whenever an operator is encountered – pop the stack twice, perform the operation on the two items popped and push the result back onto the stack.

when no more operators exist the stack should contain only one item, which is the result of the expression.

Operator Precedence Parser Algorithm

If input is:

an operand – output immediately.

a right parenthesis – pop operator stack until a left parenthesis is seen. Pop the (but don’t write it.

an operator – pop operator stack until an operator with a lower precedence is seen or a right-associative operator of equal precedence is seen, then push the operator.

EOF – pop the rest of the operator stack.

Day 17 - 2

