COP 3503 – Computer Science II – CLASS NOTES - DAY #11 Supplement
Elementary Sorting Algorithms

Selection Sort

Selection sort is an attempt to localize the exchanges of array elements by finding a misplaced element first and putting it in its final place. The element with the lowest value is selected and exchanged with the element in the first position. Then for the remaining elements the smallest value is found and interchanged with the second position in the array, and so on.

Example – Selection Sort

Initial array

	7
	5
	2
	3
	1
	4
	6

First swap produces (underlined cells indicate sorted portion of the array)

	1
	5
	2
	3
	7
	4
	6

Second swap produces

	1
	2
	5
	3
	7
	4
	6

Third swap produces

	1
	2
	3
	5
	7
	4
	6

Fourth swap produces

	1
	2
	3
	4
	7
	5
	6

Fifth swap produces

	1
	2
	3
	4
	5
	7
	6

Sixth swap produces – completes sort

	1
	2
	3
	4
	5
	6
	7

Pseudocode and Java Implementations of Selection Sort

Pseudocode version

selectionsort(data[])

for (i = 0; i < data.length-1; i++)

 select the smallest element among data[i], …,data[data.length-1];

 swap it with data[i];

Generic Java version

public void selectionsort(Object[] data)

{ int i, j, least;

 for (i=0;i < data.length-1; i++)

 { for j = i + 1; least = i; j < data.length; j++)

 if (((Comparable) data[j]).compareTo.(data[least]) < 0)

 least = j;

 swap(data,least, i);

 }

}

where swap() exchanges elements data[least], and data[i]. Swap is given by:

Generic version

void swap(Object[] a, int e1, int e2)

{ Object temp = a[e1];

 a[e1] = a[e2];

 a[e2] = temp;

}

Integer version

void swap(int[] a, int e1, int e2)

{ int tmp = a[e1];

 a[e1] = a[e2];

 a[e2] = tmp;

}

NOTE: The variable least is not the smallest element but rather the index of the smallest element.

Integer Java version

public void selectionsort(t[] data)

{ int i, j, least;

 for (i=0;i < data.length-1; i++)

 { for j = i + 1; least = i; j < data.length; j++)

 if (data[j] < data[least])

 least = j;

 swap(data,least, i);

 }

}

Bubble Sort

A bubble sort is best envisioned with a vertical array whose smallest elements are at the top and whose largest elements are at the bottom. The array is scanned from the bottom up, and two adjacent elements are interchanged if they are found to be out of order with respect to each other. In this fashion the smallest element is bubbled to the top of the array (the first position). However, this is only the first pass through the array. The array is scanned again comparing consecutive items and interchanging them when needed. The second time however, the last comparison is done for data[2] and data[1] since the smallest element is already in position data[0]. This process continues until the last pass when only one comparison between data[n-1] and data[n-2] and the possible interchange occurs.

Pseudocode and Java Implementations

Pseudocode version

bubblesort (data[])

 for (i=0; i < data.length-1; i++)

 for (j = data.length-1; j > i; --j)

 swap elements in position j and j-1 if they are out of order;

Generic Java version
public void bubblesort (Object[] data)

{ int i, j;

 for (i = 0; i < data.length-1; i++)

 for (j = data.length-1; j > i; --j)

 if (((Comparable) data[j]).compareTo(data[j-1]) < 0)

 swap(data, j, j-1);

}

Integer Java version
public void bubblesort (int[] data)

{ int i, j;

 for (i = 0; i < data.length-1; i++)

 for (j = data.length-1; j > i; --j)

 if (data[j] < data[j-1])

 swap(data, j, j-1);

}

Example – Bubble Sort

Initial Array

	7
	5
	2
	3
	1
	4
	6

After pass 1 (sorted portion of the array shown in green)

	1
	7
	5
	2
	3
	4
	6

After pass 2 (note the change in order of the various data elements)

	1
	2
	7
	5
	3
	4
	6

After pass 3

	1
	2
	3
	7
	5
	4
	6

After pass 4

	1
	2
	3
	4
	7
	5
	6

After pass 5

	1
	2
	3
	4
	5
	7
	6

After pass 6 – sort completed

	1
	2
	3
	4
	5
	6
	7

Insertion Sort

An insertion sort starts by considering the first two elements of the array data, which are data[0] and data[1]. If they are out of order, an interchange takes place. Then, the third element, data[2], is considered and inserted into its proper place. If data[2] is less than data[0] and data[1], these two elements are shifted by one position: data[0] is placed at position 1, data[1] at position 2, and data[2] at position 0. If data[2] is less than data[1] and not less than data[0], then only data[1] is moved to position 2 and its place is taken by data[2]. If, finally, data[2] is not less than both its predecessors, it stays in its current position. Each element data[i] is inserted into its proper location j such that 0 (j (i, and all elements greater than data[i] are moved by one position.

Pseudocode and Java Implementations

Pseudocode version

insertionsort (data[])

{ for (i = 1; i < data.length; i++)

 temp = data[i];

 move all elements data[j] greater than temp by one position;

 place temp in its proper position;

}

Generic Java version

public void insertionsort (Object[] data)

{ Comparable temp;

 int i,j;

 for (i = 1; i < data.length; i++)

 { temp = (Comparable) data[i];

 for (j = i; j > 0 && temp.compareTo(data[j-1]) < 0; j--)

 data[j] = data[j-1];

 data[j] = temp;

 }

}

Integer Java version

public void insertionsort (int[] data)

{ int temp;

 int i,j;

 for (i = 1; i < data.length; i++)

 { temp = data[i];

 for (j = i; j > 0 && temp < data[j-1]; j--)

 data[j] = data[j-1];

 data[j] = temp;

 }

}

Example – Insertion Sort
Initial Array

	7
	5
	2
	3
	1
	4
	6

After pass 1 (sorted portion in blue – unexamined portion in yellow)

	5
	7
	2
	3
	1
	5
	6

After pass 2

	5
	7
	2
	3
	1
	5
	6

After pass 3 (ith pass has i elements sorted)

	2
	5
	7
	3
	1
	4
	6

After pass 4

	2
	3
	5
	7
	1
	4
	6

After pass 5

	1
	2
	3
	5
	7
	4
	6

After pass 6

	1
	2
	3
	4
	5
	7
	6

After pass 7 – sort completed

	1
	2
	3
	4
	5
	6
	7

Day 11 Supplement - 5

