COP 3503 – Computer Science II – CLASS NOTES - DAY #11

SORTING

Sorting is one of the fundamental applications of computer systems. Almost everything done on a computer involves sorting of some kind. We will be concerned here only with internal sorting which is sorting that can be completely carried out in main memory (thus the number of elements is relatively small <106 probably). Sorting operations that cannot be completely carried out in main memory are called external sorts.

In general sorting makes finding things easier. Recall our algorithms for searching, linear searching was costly but binary searching was much more efficient because the search space was sorted. Think what finding a phone number in the Orlando phone book would be like if it were unsorted!

Sorting also has advantages that are less apparent but just as useful as applications in searching. Consider the problem of determining if an array of values contains any duplicate entries (an algorithm for solving this problem is shown below).

Algorithm for determining the presence of duplicate elements in an array

assume a[], SIZE

for (i = 0; i < SIZE; i++)

for (j = i+1; j < SIZE; j++)

if (a[i] == a[j]) return true;

return false;

Clearly the worst case time for this algorithm is O(N2) where N = SIZE. Now consider the following algorithm for the same problem.

Algorithm for determining the presence of duplicate elements in an array

sort_array();

for (i = 0; i < SIZE; i++)

if (a[i] == a[i+1]) return true;

return false;

This algorithm has a worst case time of: max[O(N), O(sort_array())] since the loop is clearly an O(N) loop one pass through the sorted array will tell you if any adjacent elements are the same – so if we can sort the array in any time less than quadratic time – this algorithm will beat the previous version. The only difference between the two algorithms is that the second one assumes the array is sorted.

Insertion Sort

Insertion sort is one of the simplest sorts known. In the worst case its running time will be O(N2) – which will occur when the array to be sorted is already sorted but in the reverse order (i.e., want ascending order and array is in descending order or vice versa). The insertion sort algorithm is shown below:

Insertion Sort Algorithm

assume a[], SIZE

int temp;

for (p = 1; p < SIZE; p++)

{temp = a[p];

 for (j = p; j > 0 && temp < a[j-1]; j--)

a[j] = a[j-1];

 a[j] = temp;

}

Array Position
Inversions Processed
0
1
2
3
4
5

initial state

8
5
9
6
2
3

after a[0..1] is sorted
(8,5)
5
8
9
6
2
3

after a[0..2] is sorted
none
5
8
9
2
6
3

after a[0..3] is sorted
(9,2) (8,2) (5,2)
2
5
8
9
6
3

after a[0..4] is sorted
(9,6) (8,6)
2
5
6
8
9
3

after a[0..5] is sorted
(9,3) (8,3) (6,3) (5,3)
2
3
5
6
8
9

Insertion sort example – shaded area is the sorted portion of the array after the step

As mention before the worst case time for this algorithm is O(N2) but the best case time will be O(N) which occurs when the input array is already sorted in which case the inner for loop condition will fail at every test and thus it never loops leaving the outer loop to iterate N times. The average case requires a bit more analysis to determine which we will now examine.

An inversion in an array of numbers is any ordered pair (i, j) such that i<j but Ai > Aj, where i,j are index values and A is the array name. An inversion is basically any pair of numbers not in proper sorted order (assume ascending order). As an example, consider the array: {8 5 9 2 6 3}. This array contains 10 inversions which are: (8,5) (8,2) (8,6) (8,3) (5,2) (5,3) (9, 2) (9,6) (9,3) (6,3). In general, if an array contains I inversions then I swaps will be required to sort the array. Interchanging the location of the two elements in any inversion removes one inversion from the total number of inversions in the array. This can be seen(see the example array above) by interchanging the 8 and the 5 element in the example, which produces: {5 8 9 2 6 3} and the resulting array contains only nine inversions which are: (8,2) (8,6) (8,3) (5,2) (5,3) (9, 2) (9,6) (9,3) (6,3). Since the algorithm contains O(N) other work – the running time of the insertion sort algorithm must be O(N + I) and we have:

T(N)average = O(Iaverage + N)

Combinatorics provides a solution for Iaverage = [N(N-1)]/4 = (N2 – N)/4

This is Theorem 8.1 in the textbook (page 226).

This yields: T(N)average = O[(N2-N)/4 + N] = O[(N2 + 3N)/4] = O(N2)

Theorem: Any algorithm that sorts by exchanging adjacent elements requires Ω(N2) time on the average. Recall that Ω provides a lower bound

The proof of the theorem above produces a lower bound proof which is valid for an entire class of algorithms (the class of algorithms that make implicit adjacent exchanges). Note that this class contains an infinite number of algorithms so computational verification of a lower bound conjecture is not possible only computational disproval is possible.

This lower bound on sorting algorithms of this type (sorting by exchange of adjacent elements) implies that for a sorting algorithm to run in subquadratic or o(N2) time, it must do its exchanges on elements that are non-adjacent (or relatively far apart). [Recall that o(N2) means that the function grows at a rate slower than quadratic.] A sorting algorithm moves toward a sorted data set by removing inversions from the data set. For a sorting algorithm to be efficient, it must remove more than one inversion per exchange of elements.

Shellsort

The Shellsort represents an improvement on the insertion sort. It was developed in 1959 by Donald Shell and while it is not the fastest of all sorts it is a subquadratic sort that is simple to code and has a good average performance. The basic idea behind the Shellsort was to avoid moving large amounts of data during the sort by first comparing elements that are relatively far away and then by comparing elements that are relatively much closer – gradually collapsing into the basic insertion sort where the incremental distance between compared elements is one.

The Shellsort operates with an increment sequence, h1, h2, h3, …, hk. Any increment sequence will work, as long as h1 = 1, however, some increment sequences are better than others, we will see why. After a sorting phase, using some increment hk, the data set will have the property: (i, a[i] (a[i + hk]. Thus all elements that are spaced hk apart are sorted. At this point the data set is said to be hk – sorted.
Original
81
94
11
96
12
35
17
95
28
58
41
75
15

Start 5-sort
35

81

17

94

11

95

28

96

12

58

41

81

75

94

15

95

After 5-sort
35
17
11
28
12
41
75
15
96
58
81
94
95

Start 3-sort
35
17
11
28
12
41
75
15
96
58
81
94
95

28

35

12

17

11

41

35

75

15

17

41

96

58

75

17

81

94

96

75

95

After 3-sort
28
12
11
35
15
41
58
17
94
75
81
96
95

Start 1-sort
28
12
11
35
15
41
58
17
94
75
81
96
95

12
28

11
12
28

11
12
28
35

11
12
15
28
35

11
12
15
28
35
41

11
12
15
28
35
41
58

11
12
15
17
28
35
41
58

11
12
15
17
28
35
41
58
94

11
12
15
17
28
35
41
58
75
94

11
12
15
17
28
35
41
58
75
81
94

11
12
15
17
28
35
41
58
75
81
94
96

After 1-sort
11
12
15
17
28
35
41
58
75
81
94
95
96

Original
81
94
11
96
12
35
17
95
28
58
41
75
15

After 5-sort
35
17
11
28
12
41
75
15
96
58
81
94
95

After 3-sort
28
12
11
35
15
41
58
17
94
75
81
96
95

After 1-sort
11
12
15
17
28
35
41
58
75
81
94
95
96

Shellsort manipulation of the array

Notice that after the 5-sort completes, every fifth element is in sorted order. Similarly, after the 3-sort completes, every third element is in sorted order. This is illustrated in the summary table shown above. This observation leads to is a very important property of the Shellsort:

An array that is hk-sorted which is subsequently hk-1-sorted remains hk-sorted

This means that work done by earlier sorting passes is not undone by subsequent sorting passes. Since the increment decreases with each pass through the array – the Shellsort is known as a diminishing gap sort. At each step the Shellsort basically performs an insertion sort where the two elements involved in the inversion are separated by a distance equal to the current gap or the value of k. Shell himself suggested that the starting gap size be N/2 with the increment (k) halved at each iteration until it reaches 1. [Initial gap is hN/2 down to 1.] The Shellsort algorithm is shown below:

Shellsort Algorithm //using gap divisor of 2.2 (not Shell’s 2.0 version)

assume a[], SIZE

for (g = (SIZE/2); g > 0; g = (g == 2) ? 1 : (int)(g/2.2))

// prevents setting the gap to zero, if it is about to be set to zero make it 1

for (i = g; i < SIZE; i++)

{
temp = a[i];

for (j = i; j >= g && temp < a[j-g]; j - = g)

a[j] = a[j-g];

a[j] = temp;

}

Analysis of Shellsort

The running time of the Shellsort is heavily dependent in the choice of the increment values and the proofs can get quite involved. Except for the most trivial situations, the average running time of the Shellsort algorithm is an open problem. When Shell’s increments are used, the worst case running time can be proven to be O(N2). This bound is achievable when N is a power of 2, all of the large elements are in even-indexed positions in the array, and all of the small elements are in odd-indexed positions.

Example: N = 8 (23), gap divisor = 2.0

Original
8
2
6
3
7
1
5
4

start 3-sort
3

8

2

7

1

6

5

8

4

7

intermediate
3
2
1
5
4
6
8
7

2

4

1

6

5

8

4

7

intermediate
3
2
1
5
4
6
8
7

1

6

5

8

4

7

intermediate
3
2
1
5
4
6
8
7

5

8

4

7

intermediate
3
2
1
5
4
6
8
7

4

7

after 3-sort
3
2
1
5
4
6
8
7

start 2-sort
1

3

2

5

3

4

5

6

4

8

6

7

intermediate
1
2
3
5
4
6
8
7

2

5

3

4

5

6

4

8

6

7

intermediate
1
2
3
5
4
6
8
7

3

4

5

6

4

8

6

8

intermediate
1
2
3
5
4
6
8
7

5

6

4

8

6

7

intermediate
1
2
3
5
4
6
8
7

4

8

6

7

after 2-sort
1
2
3
5
4
6
8
7

start 1-sort
1
2

2
3

3
5

4
5

5
6

6
8

7
8

intermediate
1
2
3
4
5
6
7
8

2
3

3
4

 4
5

5
6

6
7

7
8

intermediate
1
2
3
4
5
6
7
8

4
5

5
6

6
7

7
8

intermediate
1
2
3
4
5
6
7
8

5
6

6
7

7
8

intermediate
1
2
3
4
5
6
7
8

7
8

sort complete
1
2
3
4
5
6
7
8

Some improvements on this bound have been developed over time. For example, if the gap divided by two results in an even number, then adding one to it will result in an odd number. The worst case time then becomes O(N3/2) which is better than quadratic time. The average case for this situation has not been proven but experimentally seems to be O(N5/4).

The algorithm shown earlier, uses a further improvement, in which the gap divisor is set at 2.2 rather than Shell’s value of 2. This gap divisor value appears to have an average running time of <O(N5/4) perhaps as low as O(N7/6), but this is not completely resolved. Simulations with arrays that vary in size from 100,000 to 1,000,000 elements show typically a 25-35% improvement in the running time. No one is quite sure why this occurs as there is no theoretical basis for it – it just is!

N
Insertion Sort
Shellsort

Shell’s gap
Odd gaps
Gap divisor 2.2

1000
122
11
11
9

2000
483
26
21
23

4000
1936
61
59
54

8000
7950
153
141
114

16000
35,560
358
322
569

32000
131,911
869
752
575

64000
520,000
2091
1705
1249

Running time (msec) of Insertion and Shellsort with various increments

CHAPTER 8

Day 11 - 10

