COP 3503 – Computer Science II  –  CLASS NOTES     DAY #1
INTRODUCTION

Problem-Solving Techniques 

1. Understand the problem completely.

2. Divide the problem into manageable pieces (divide and conquer) 

3. Create solutions
4. Consider alternative solutions and refine the one selected
5. Implement the solution
6. Test and fix the solution
Polymorphism

(a general definition – having many forms)

Creating a general solution for a class of problems which may be further specified to solve particular instances of the problem.


Syntax

· A set of rules of a programming language that dictates the legal form of a program

Semantics

· Describes the meaning of the program statements


Compile-Time Errors
· Errors in syntax that can be caught by the compiler.  These can be fatal or non-fatal.  A fatal syntax error will halt compilation at the point of the fatal error.  A non-fatal error will allow compilation to continue (although sometimes not correctly).

Run-Time Error
· Errors in semantics.  This causes your program to blowup.

Logical Errors

· Errors in semantics which do not cause a run-time error but produce erroneous results.

Encapsulation
· A form of information hiding

· Keeping data and non-essential methods private.  Public methods are provided to allow user interaction.

· Obscures or hides non-essential details and methods.

· Objects are encapsulated.  The rest of the system interacts with an object only through a well-defined set of services that it provides.

Abstraction
· Generalization.  Allows for selective examination of parts of a problem.

· Hides details.

Inheritance
· Deriving a new, generally a more specific class, from an existing class.

· An important reason for using inheritance is to reuse software.

· IS-A relationship.

Inheritance Explained
Single Inheritance:


· Java is very good at representing single level inheritance.

· In the example shown above:  Mine inherits from CRG motor explicitly and from Enduro, Kart, Thing, and Object implicitly.

· Each subclass has one explicit parent ONLY but inherits from all "straight line" ancestors implicitly. 

· The original class used to define the new class is called the parent class, or superclass, or base class.  
· The derived class is called a child class, or subclass.  (Java uses the keyword extends to indicate that the new class is being derived from another.)
· The child class automatically inherits an initial set of methods and variables from the parent class.  The inherited variables and methods can be used by the child class as if they had been locally declared in the child class.
Multiple Inheritance:
In multiple inheritance a subclass can inherit explicitly from an unbounded number of parent classes.

This is not good in general!  Why?  Consider the following situation.


Problems:

1. Which constructor does chalk use?

2. If Truck and Car have methods with the same name – which method does Pick-up inherit?

· Java uses interfaces (potentially multiple-levels of interfacing) to support some of the functionality of multiple-inheritance.

· Java’s techniques allow for the “good” part of multiple inheritance without the “bad” parts
Example:  Class of problem: addition


		Polymorphic solution:  counting





		Specific problem #1:  3 + 1


		Specific solution for #1:  counting on your left hand


		Another specific solution for #1: counting on your right hand





		Specific problem #2:  3 + 4


		Specific solution for #2: counting on both hands





		Specific problem #3:  10 + 7


		Specific solution for #3:  counting on fingers and toes





Example:  consider the sentence:  “No fruit flies like a banana.”





	Syntax is:  qualifier / noun phrase / verb / noun phrase





	Semantics:  not((x) [ fruit fly (x) and likes(x, banana)]


Read as: there isn't a fruit fly that does not like bananas.





OR - Syntax is: qualifier / noun / verb / adjective phrase





Semantics: not((x) [ fruit (x) and flies (x) ( flies (banana)]


	Read as: there isn't any fruit that flies like a banana.


 


	





Object


constructor


get








constructor





Object





Thing	





Stuff





Kart	





Enduro





CRG motor	





Mine	





Chalk





Eraser





Books





Stuffing





This one





This one





CS





texts





COP 3503





T-day dinner





T-day dinner





COP 3503





texts





CS





This one





Truck


constructor


get








constructor





Stuffing





Books





Chalk





Company





Mine	





CRG motor	





Margay





Kart	





Stuff





Thing	





Object





Car


constructor


get








constructor





Pick-up 








constructor








Day 1 -1

