
Computer Science I – Fall 2011

Lab #6: Stack Applications – Infix/Postfix Expressions

Part 1: Convert the following INFIX expressions into POSTFIX expressions using a stack. In

order to demonstrate that you know how to use the stack correctly, you must show the contents

of the stack at the indicated points (A, B, C) in the infix expression.

The TA will demonstrate exactly what this means, but you should keep a “Working” stack that

you use to solve the problem. Then just copy the contents of the “Working” stack over at to

stacks A, B, and C when appropriate.

1) 11 * (

A

6 – 5 + 3)

B

 – (3 + 7) /

C

 2

2) 42 – 16

 A

 / (8 – 4

 B

 * 3) +

C

10

3) 12

 A

– (4 –

B

8) –

C

6

4) (2 + 9 + 6

 A

– 11)

B

/ 2 + 6

 C

+ 3 – 7

5) 13 – (18 + (10

A

 – 7 + 3) * 2

B

– 10) / ((10 – 6) * 3

C

– 2)

Part 2: Evaluate the POSTFIX expressions that you just developed (after the conversion). Use

the stack method that we discussed in class.

Cheat Sheet:

Infix to Postfix Evaluating Postfix

1) For all operands, automatically place them in the output

expression.

2) For an operator (+, -, *, /, or a parenthesis)

IF the operator is an open parenthesis, push it onto the stack.

ELSE IF the operator is an arithmetic one, then do this:

Continue popping off items off the stack and placing

them in the output expression until you hit an operator

with lower precedence than the current operator or until

you hit an open parenthesis. At this point, push the

current operator onto the stack.

ELSE Pop off all operators off the stack one by one, placing

them in the output expression until you hit the first(matching)

open parenthesis. When this occurs, pop off the open

parenthesis and discard both ()s.

1) Each number gets pushed onto the

stack.

2) Whenever you get to an operator

OP, you pop off the last two

values off the stack, s1 and s2

respectively. Then you push the

value s2 OP s1 back onto the

stack. (If there are not two values

to pop off, the expression being

evaluated is not in valid post-fix

notation.)

3) When you are done, you should

have a single value left on the

stack that the expression evaluates

to.

