
Quick Sort

// Pre-condition: low and high are value indices into numbers.

// Post-condition: The values in numbers will be sorted in between

// indices low and high

void quicksort(int* numbers, int low, int high) {

 // Only have to sort if we are sorting more than one number

 if (low < high) {

 int split = partition(numbers,low,high);

 quicksort(______________________________);

 quicksort(______________________________);

 }

}

// Swaps the values pointed to by a and b.

void swap(int *a, int *b) {

 int temp = *a;

 *a = *b;

 *b = temp;

}

8 3 6 9 2 4 1 0 7 5

If we call quicksort(vals, 0, 9) (assume 6 is the partition element) fill in split and what the following recursive

calls would contain:

split = _____________________
quicksort(______________________________)

quicksort(______________________________)

vals

Quick Sort

8 3 6 9 2 4 1 0 7 5

Assume the 1
st
 time partition is called, i = 2. Show the contents of vals after each iteration of the while loop:

After 1
st
 Loop:

After 2
nd

 Loop:

After 3
rd

 Loop:

After putting partition in the right spot:

// Returns the partition index such that all the values stored in vals from low

// to partition are < partition & all the vals from partition to high are > .

int partition(int* vals, int low, int high) {

 int temp;

 int i, lowpos;

 if (low == high) return low; // A base case that should never really occur.

 // Pick a random partition element and swap it into index low.

 i = low + rand()%(high-low+1);

 temp = vals[i];

 vals[i] = vals[low];

 vals[low] = temp;

 lowpos = low; // Store the index of the partition element.

 low++; // Update our low pointer.

 while (low <= high) {

 // Move the low pointer until we find a value too large for this side.

 while (_________________________________) low++;

 // Move high until we find a value too small for this side.

 while (_______________________________________) high--;

 if (low < high) // Swap the two values that were on the wrong side.

 swap(&vals[low], &vals[high]);

 }

 swap(&vals[lowpos], &vals[high]); // Swap partition into right spot.

 return high; // Return the index of the partition element.

}

vals

