
Recurrence

Relations

COP 3502

Recurrence Relation

 In mathematics, a recurrence relation is an
equation that recursively defines a sequence.

 For example, a mathematical recurrence relation for
the Fibonacci Numbers is:

Fn = Fn-1 +Fn-2

With base cases:
– F2 = 1

– F1 = 1

With that we can determine the 5th Fibonacci number:
– F5 = F4 + F3

– F4 = F3 + F2

– F3 = F2 + F1 = 1 + 1 = 2

= 2 + 1 = 3

= 3 + 2 = 5

Recurrence Relations

 What we are going to use Recurrence Relations
for in this class is to solve for the run-time of a
recursive algorithm.
 Notice we haven’t looked at the run-time of any

recursive algorithms yet,

 We have only analyzed iterative algorithms,
Where we can either approximate the runtime just by

looking at it,

or by using summations as a tool to solve for the run-time.

 Recurrence relations will be the mathematical tool
that allows us to analyze recursive algorithms.

Recursion Review

 What is Recursion?

 A problem-solving strategy that solves large
problems by reducing them to smaller problems
of the same form.

Recursion Review

 An example is the recursive algorithm for finding the
factorial of an input number n.
 Where 4!
= 4*3*2*1 = 24

 Note that each factorial is related to the factorial of the
next smaller integer:
n! = n * (n-1)!

So, 4! = 4 * (3-1)! = 4 * 3!

We stop at 1! = 1

 In mathematics, we would define:
n! = n * (n-1)! if n > 1

n! = 1 if n = 1

Recursion Review

 The recursive algorithm for finding the factorial of an
input number n.
 Where 4!
= 4*3*2*1 = 24

int factorial(int n) {

 if (n == 1)

 return 1;

 return n * factorial(n-1);

}

factorial(4) : return 4 * factorial(3);

return 3 * factorial(2); factorial(3) :

return 2 * factorial(1); factorial(2) :

Stack

2 * 1 = 2

3 * 2 = 6

4 * 6 = 24

factorial(1) : return 1; 1

Recurrence Relations

 Let’s determine the run-time of factorial,
 Using Recurrence Relations

 We can see that the total number of operations to execute
factorial for input size n
1) The sum of the 2 operations (the ‘*’ and the ‘-’)
2) Plus the number of operations needed to execute the

function for n-1.
 OR if it’s the base case just one operation to return.

int factorial(int n) {

 if (n == 1)

 return 1;

 return n * factorial(n-1);

}

Recurrence Relations

 We will define T(n) as the number of operations
executed in the algorithm for input size n.
 So T(n) can be expressed as the sum of:

T(n-1)

plus the 2 arithmetic operations

 This gives us the following Recurrence Relation:
T(n) = T(n-1) + 2

T(1) = 1

int factorial(int n) {

 if (n == 1)

 return 1;

 return n * factorial(n-1);

}

Recurrence Relations

 So we’ve come up with a Recurrence Relation, that defines the
number of operations in factorial:
T(n) = T(n-1) + 2

T(1) = 1

 BUT this isn’t in terms of n, it’s in terms of T(n-1),
So what we want to do is remove all of the T(…)’s from the right side of

the equation.

This will give us the “closed form” and we will have solved for the
number of operations in terms of n

AND THEN, we can determine the Big-O Run-Time!

int factorial(int n) {

 if (n == 1)

 return 1;

 return n * factorial(n-1);

}

Recurrence Relations

 Solve for the closed form solution of:

T(n) = T(n-1) + 2

T(1) = 1

 We are going to use the iteration technique.

First, we will recursively solve T(n-1) and plug that back into the
equation,

And we will continue doing this until we see a pattern.
– Iterating, which is why this is called the iteration technique.

int factorial(int n) {

 if (n == 1)

 return 1;

 return n * factorial(n-1);

}

 Use the iteration technique to solve for the closed form
solution of (Solved in class):

T(n) = T(n-1) + 2 T(1) = 1

 Use the iteration technique to solve for the closed form
solution of (Solved in class):

T(n) = T(n-1) + 2 T(1) = 1

Towers of Hanoi

 If we look at the Towers of Hanoi recursive algorithm,
 we can come up with the following recurrence relation for

the # of operations:
(where again T(n) is the number operations for an input size of n)

 T(n) = T(n-1) + 1 + T(n-1) and T(1) = 1

 Simplifying: T(n) = 2T(n-1) + 1 and T(1) = 1

void doHanoi(int n, char start, char finish, char temp) {

 if (n==1) {

 printf(“Move Disk from %c to %c\n”, start,

finish);

 }

 else {

 doHanoi(n-1, start, temp, finish);

 printf(“Move Disk from %c to %c\n, start finish);

 doHanoi(n-1, temp, finish, start);

 }

}

 Use the iteration technique to solve for the closed form
solution of (Solved in class):

T(n) = 2T(n-1) + 1 and T(1) = 1

 Use the iteration technique to solve for the closed form
solution of (Solved in class):

T(n) = 2T(n-1) + 1 and T(1) = 1

Recursive Binary Search
 If we look at the Binary Search recursive algorithm,
 we can come up with the following recurrence relation for

the # of operations:
 (where again T(n) is the number operations for an input size of n)

 T(n) = T(n/2) + 1 and T(1) = 1

int binsearch(int *values, int low, int high, int val) {

 int mid;

 if (low <= high){

 mid = (low+high)/2;

 if (val == values[mid])

 return 1;

 else if (val > values[mid])

 return binsearch(values, mid+1, high, val)

 else

 return binsearch(values, low, mid-1, val);

 }

 return 0;

}

 Use the iteration technique to solve for the closed form
solution of (Solved in class):

T(n) = T(n/2) + 1 and T(1) = 1

 Use the iteration technique to solve for the closed form
solution of (Solved in class):

T(n) = T(n/2) + 1 and T(1) = 1

Exponentiation
 If we look at the Power recursive algorithm,
 we can come up with the following recurrence relation for

the # of operations:
 (where T(exp) is the number operations for an input size of exp)

 T(exp) = T(exp - 1) + 1 and T(1) = 1

int Power(int base, int exp) {

 if (exp == 1)

 return base;

 else

 return (base*Power(base, exp – 1);

}

 Use the iteration technique to solve for the closed form
solution of (Solved in class):

T(exp) = T(exp - 1) + 1 and T(1) = 1

 Use the iteration technique to solve for the closed form
solution of (Solved in class):

T(exp) = T(exp - 1) + 1 and T(1) = 1

Fast Exponentiation
 If we look at the Fast Exponentiation recursive algorithm,
 How do we come up with a recurrence relation for the # of

operations?
 (where T(exp) is the number operations for an input size of exp)

 This one is a little more difficult because we do something
different if exp is even, or exp is odd.

int PowerNew(int base, int exp) {

 if (exp == 0)

 return 1;

 else if (exp == 1)

 return base;

 else if (exp%2 == 0)

 return PowerNew(base*base, exp/2);

 else

 return base*PowerNew(base, exp-1);

}

Fast Exponentiation
 If we look at the Fast Exponentiation recursive

algorithm,
 When exp is even we have:

T(exp) = T(exp/2) + 1

 When exp is odd
T(exp) = T(exp – 1) + 1

int PowerNew(int base, int exp) {

 if (exp == 0)

 return 1;

 else if (exp == 1)

 return base;

 else if (exp%2 == 0)

 return PowerNew(base*base, exp/2);

 else

 return base*PowerNew(base, exp-1);

}

And this step changes exp to be even!

So roughly speaking we have this:
T(exp) <= T(exp/2) + 2

 Use the iteration technique to solve for the closed form
solution of

T(exp) <= T(exp/2) + 2

Hopefully we notice that this almost identical to the binary search
recurrence relation:

– T(n) = T(n/2) + 1 (Except we would have an extra +1 at the end)

So we would end up with:

– T(n) = log2n + 2

– O(log n)

So if exp = 1020, we would do on the order of lg 1020
operations which is around 66.

As opposed to 100 billion billion operations.

Pitfalls of Big-O Notation

1) Not useful for small input sizes

 Because the constants and smaller terms will matter.

2) Omission of the constants can be misleading

 For example, 2N log N and 1000 N

 Even though its growth rate is larger, the 1st function is
probably better. Because the 1000 constant could be
memory accesses or disk accesses.

3) Assumes an infinite amount of memory

 Not trivial when using large data sets.

4) Accurate analysis relies on clever observations to
optimize the algorithm.

Master Theorem

 There is a general plug n chug formula for
recurrence relations as well
 Good for checking your answers after using the iterative

method (since you’ll have to use the iterative method on
the exam)

 If T(n) = AT(n/B) + O(nk), where A,B,k are constants:

 Then T(n) = O(n logBA) if A > Bk

 O(nk log n) if A = Bk

 O(nk) if A < Bk

Is the Big-O run-time.

Master Theorem

 T(n) = AT(n/B) + O(nk), where A,B,k are constants:

 T(n) = O(n logBA) if A > Bk

 O(nk log n) if A = Bk

 O(nk) if A < Bk

 Some examples:

Recurrence Rel. Case Answer
T(n) = 3T(n/2) + O(n2) 3 O(n2)
T(n) = 4T(n/2) + O(n2) 2 O(n2log n)
T(n) = 9T(n/2) + O(n3) 1 O(n^(log29))
T(n) = 6T(n/3) + O(n2) 3 O(n2)
T(n) = 5T(n/5) + O(n) 2 O(nlog n)

