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Recurrence Relation 

 In mathematics, a recurrence relation is an 
equation that recursively defines a sequence. 

 For example, a mathematical recurrence relation for 
the Fibonacci Numbers is: 

Fn = Fn-1 +Fn-2 

With base cases: 
– F2 = 1 

– F1 = 1 

With that we can determine the 5th Fibonacci number: 
– F5 = F4 + F3 

– F4 = F3 + F2  

– F3 = F2 + F1 = 1 + 1 = 2 

= 2 + 1 = 3 

= 3 + 2 = 5 



Recurrence Relations 

 What we are going to use Recurrence Relations 
for in this class is to solve for the run-time of a 
recursive algorithm. 
 Notice we haven’t looked at the run-time of any 

recursive algorithms yet, 

 We have only analyzed iterative algorithms,  
Where we can either approximate the runtime just by 

looking at it,  

or by using summations as a tool to solve for the run-time. 

 Recurrence relations will be the mathematical tool 
that allows us to analyze recursive algorithms. 



Recursion Review 

 What is Recursion? 

 A problem-solving strategy that solves large 
problems by reducing them to smaller problems 
of the same form. 

 



Recursion Review 

 An example is the recursive algorithm for finding the 
factorial of an input number n. 
 Where 4!  
= 4*3*2*1 = 24 

 Note that each factorial is related to the factorial of the 
next smaller integer: 
n! = n * (n-1)! 

So, 4! = 4 * (3-1)! = 4 * 3! 

We stop at 1! = 1 

 In mathematics, we would define: 
n! = n * (n-1)!  if n > 1 

n! = 1    if n = 1 



Recursion Review 

 The recursive algorithm for finding the factorial of an 
input number n. 
 Where 4!  
= 4*3*2*1 = 24 

 

int factorial(int n) { 

    if (n == 1) 

        return 1; 

     

    return n * factorial(n-1); 

} 

factorial(4) : return 4 * factorial(3); 

return 3 * factorial(2); factorial(3) : 

return 2 * factorial(1); factorial(2) : 

Stack 

2 * 1 = 2 

3 * 2 = 6 

4 * 6 = 24 

factorial(1) : return 1; 1 



Recurrence Relations 

 Let’s determine the run-time of factorial, 
 Using Recurrence Relations 

 We can see that the total number of operations to execute 
factorial for input size n 
1) The sum of the 2 operations (the ‘*’ and the ‘-’) 
2) Plus the number of operations needed to execute the 

function for n-1. 
 OR if it’s the base case just one operation to return. 

int factorial(int n) { 

    if (n == 1) 

        return 1; 

     

    return n * factorial(n-1); 

} 



Recurrence Relations 

 We will define T(n) as the number of operations 
executed in the algorithm for input size n. 
 So T(n) can be expressed as the sum of: 

T(n-1) 

plus the 2 arithmetic operations 

 This gives us the following Recurrence Relation: 
T(n) = T(n-1) + 2 

T(1) = 1 

int factorial(int n) { 

    if (n == 1) 

        return 1; 

     

    return n * factorial(n-1); 

} 



Recurrence Relations 

 So we’ve come up with a Recurrence Relation, that defines the 
number of operations in factorial: 
T(n) = T(n-1) + 2 

T(1) = 1 

 BUT this isn’t in terms of n, it’s in terms of T(n-1), 
So what we want to do is remove all of the T(…)’s from the right side of 

the equation. 

This will give us the “closed form” and we will have solved for the 
number of operations in terms of n 

AND THEN, we can determine the Big-O Run-Time!   

int factorial(int n) { 

    if (n == 1) 

        return 1; 

     

    return n * factorial(n-1); 

} 



Recurrence Relations 

 Solve for the closed form solution of: 

T(n) = T(n-1) + 2 

T(1) = 1 

 We are going to use the iteration technique. 

First, we will recursively solve T(n-1) and plug that back into the 
equation, 

And we will continue doing this until we see a pattern. 
– Iterating, which is why this is called the iteration technique. 

int factorial(int n) { 

    if (n == 1) 

        return 1; 

     

    return n * factorial(n-1); 

} 



 Use the iteration technique to solve for the closed form 
solution of (Solved in class): 

T(n) = T(n-1) + 2     T(1) = 1 



 Use the iteration technique to solve for the closed form 
solution of (Solved in class): 

T(n) = T(n-1) + 2     T(1) = 1 



Towers of Hanoi 

 If we look at the Towers of Hanoi recursive algorithm,  
 we can come up with the following recurrence relation for 

the # of operations:  
(where again T(n) is the number operations for an input size of n) 

 T(n) = T(n-1) + 1 + T(n-1) and  T(1) = 1 

 Simplifying:  T(n) = 2T(n-1) + 1 and   T(1) = 1 

void doHanoi(int n, char start, char finish, char temp) { 

 if (n==1) { 

  printf(“Move Disk from %c to %c\n”, start, 

finish); 

 } 

 else { 

  doHanoi(n-1, start, temp, finish); 

  printf(“Move Disk from %c to %c\n, start finish); 

  doHanoi(n-1, temp, finish, start); 

 } 

} 



 Use the iteration technique to solve for the closed form 
solution of (Solved in class): 

T(n) = 2T(n-1) + 1 and   T(1) = 1 



 Use the iteration technique to solve for the closed form 
solution of (Solved in class): 

T(n) = 2T(n-1) + 1 and   T(1) = 1 



Recursive Binary Search 
 If we look at the Binary Search recursive algorithm,  
 we can come up with the following recurrence relation for 

the # of operations:  
 (where again T(n) is the number operations for an input size of n) 

 T(n) = T(n/2) + 1 and  T(1) = 1 

 
int binsearch(int *values, int low, int high, int val) { 

    int mid; 

    if (low <= high){ 

 mid = (low+high)/2; 

 if (val == values[mid]) 

     return 1;  

 else if (val > values[mid]) 

     return binsearch(values, mid+1, high, val) 

 else 

     return binsearch(values, low, mid-1, val); 

    } 

    return 0;  

} 



 Use the iteration technique to solve for the closed form 
solution of (Solved in class): 

T(n) = T(n/2) + 1  and  T(1) = 1 



 Use the iteration technique to solve for the closed form 
solution of (Solved in class): 

T(n) = T(n/2) + 1  and  T(1) = 1 



Exponentiation 
 If we look at the Power recursive algorithm,  
 we can come up with the following recurrence relation for 

the # of operations:  
 (where T(exp) is the number operations for an input size of exp) 

 T(exp) = T(exp - 1) + 1  and  T(1) = 1 

 

int Power(int base, int exp) { 

  

 if (exp == 1) 

     return base; 

 else 

     return (base*Power(base, exp – 1); 

} 



 Use the iteration technique to solve for the closed form 
solution of (Solved in class): 

T(exp) = T(exp - 1) + 1  and  T(1) = 1 



 Use the iteration technique to solve for the closed form 
solution of (Solved in class): 

T(exp) = T(exp - 1) + 1  and  T(1) = 1 



Fast Exponentiation 
 If we look at the Fast Exponentiation recursive algorithm,  
 How do we come up with a recurrence relation for the # of 

operations?  
 (where T(exp) is the number operations for an input size of exp) 

 This one is a little more difficult because we do something 
different if exp is even, or exp is odd. 

int PowerNew(int base, int exp) { 

 if (exp == 0) 

  return 1; 

 else if (exp == 1) 

  return base; 

 else if (exp%2 == 0) 

  return PowerNew(base*base, exp/2); 

 else 

  return base*PowerNew(base, exp-1); 

} 



Fast Exponentiation 
 If we look at the Fast Exponentiation recursive 

algorithm,  
 When exp is even we have: 

T(exp) = T(exp/2) + 1 

 When exp is odd 
T(exp) = T(exp – 1) + 1 

int PowerNew(int base, int exp) { 

 if (exp == 0) 

  return 1; 

 else if (exp == 1) 

  return base; 

 else if (exp%2 == 0) 

  return PowerNew(base*base, exp/2); 

 else 

  return base*PowerNew(base, exp-1); 

} 

And this step changes exp to be even! 

So roughly speaking we have this: 
T(exp) <= T(exp/2) + 2 



 Use the iteration technique to solve for the closed form 
solution of 

T(exp) <= T(exp/2) + 2 

 

Hopefully we notice that this almost identical to the binary search 
recurrence relation: 

– T(n) = T(n/2) + 1 (Except we would have an extra +1 at the end) 

 

So we would end up with: 

– T(n) = log2n + 2 

– O(log n) 

 

So if exp = 1020, we would do on the order of lg 1020 
operations which is around 66. 

As opposed to 100 billion billion operations. 



Pitfalls of Big-O Notation 

1) Not useful for small input sizes 

 Because the constants and smaller terms will matter. 

2) Omission of the constants can be misleading 

 For example, 2N log N and 1000 N 

 Even though its growth rate is larger, the 1st function is 
probably better.  Because the 1000 constant could be 
memory accesses or disk accesses. 

3) Assumes an infinite amount of memory 

 Not trivial when using large data sets. 

4) Accurate analysis relies on clever observations to 
optimize the algorithm. 



Master Theorem 

 There is a general plug n chug formula for 
recurrence relations as well 
 Good for checking your answers after using the iterative 

method (since you’ll have to use the iterative method on 
the exam) 
 

 If T(n) = AT(n/B) + O(nk), where A,B,k are constants: 
 

 Then T(n) =    O(n logBA)    if A > Bk 

        O(nk log n)  if A = Bk 

        O(nk)     if A < Bk 

 
Is the Big-O run-time. 



Master Theorem 
 

 T(n) = AT(n/B) + O(nk), where A,B,k are constants: 
 

 T(n) =    O(n logBA)    if A > Bk 

      O(nk log n)   if A = Bk 

      O(nk)     if A < Bk 

 

 Some examples: 
 

Recurrence Rel.     Case   Answer 
T(n) = 3T(n/2) + O(n2)   3    O(n2) 
T(n) = 4T(n/2) + O(n2)   2    O(n2log n) 
T(n) = 9T(n/2) + O(n3)   1    O(n^(log29)) 
T(n) = 6T(n/3) + O(n2)   3    O(n2) 
T(n) = 5T(n/5) + O(n)   2    O(nlog n) 

 


