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Code Tracing Example 

 Here is an example from a previous 
foundation exam: 

 Question:  Find the value of x in terms of n after 
the following code segment below has executed. 

You may assume that n is a positive even integer. 

x = 0; 

for (i = 1; i <= n*(8*n+8); i++) { 

    for (j = n/2; j <=n; j++) { 

        x = x + (n – j); 

    } 

} 

Solved on the board 



Sorted List Matching Problem – Approach #1 

 Let’s compare 3 different solutions to this problem and 
their runtimes. 
 Problem:  Given 2 sorted lists of names, output the names 

common to both lists. 
 Obvious – Brute Force -  way to do this: 

For each name on list #1: 
1) Search for the current name in list #2. 
2) If the name is found, output it. 

 
 This isn’t leveraging the fact that we know the list is 

sorted,  
 it would take O(n) to do (1) and (2),  
 multiplied by the n names in list#1 gives a total of O(n2) 



Sorted List Matching Problem – Approach #2 

 Let’s use the fact that the lists are sorted! 
 For each name on list #1: 

1) Search for the current name in list #2. 

2) If the name is found, output it. 

 For step (1) use a binary search. 
 We know that this takes  

O(log n) time.   

 

 Since we need to do this N times for each name in 
the first list, 
 Our total run time would be? 

 O(N log N) 



Sorted List Matching Problem – 
Approach #3 

 Can we do better? 
 We still haven’t used the fact that list #1 is sorted! 

 Can we exploit this fact so that we don’t have to do 
a full binary search for each name? 

   List #1    List #2 

   Albert    Cari 

   Brandon   Carolyn 

   Carolyn    Chris 

   Dan     Fred 

   Elton     Graham 



Sorted List Matching Problem – Approach #3 

 Formal Version of the algorithm: 

1) Start 2 “markers”, one for each list, at the beginning 
of both lists. 

2) Repeat the following until one marker has reached 
the end of its list: 

a) Compare the two names that the markers are pointing at. 

b) If they are equal, output the name and advance BOTH 
markers one spot. 

 If they are NOT equal, simply advance the marker pointing 
to the name that comes earlier alphabetically one spot. 



Sorted List Matching Problem – Approach #3 

 Algorithm Run-Time Analysis 
 For each loop iteration, we advance at least one marker. 
 The max number of iterations then , would be the total 

number of names on both list2, 2N. 
 For each iteration, we are doing a constant amount of work. 

Essentially a comparison, and/or outputting a name. 

 Thus, our algorithm runs in O(N) time – an improvement. 

 
 Can we do better? 
 No, because we need to at least read each name in both lists, 

if we skip names, on BOTH lists we cannot deduce whether 
we could have matches or not. 



Experimental Run-Time 

 We can verify our algorithm analysis through 
running actual code 

 By comparing the experimental running time of a 
piece of code for different input sizes to the 
theoretical run-time. 

 Assume T(N) is the experimental running time 
of a piece of code, 

 We’d like to see if T(N) is proportional to F(N) within 
a constant, 

Where we’ve previously determined the algorithm to be 
O(F(N)) 

 



Experimental Run-Time 
 One way to see if O(F(n)) is an accurate algorithmic 

analysis, 
 Is to compute T(N)/F(N) for a range of different values for N 

Commonly spaced out by a factor of 2. 

 If the values for T(N)/F(N) stay relatively constant, 
then our guess for the running time O(F(N)) was good. 

 Otherwise, if these T(N)/F(N) values, converge to 0 
our run-time is more accurately described by a function smaller 

than F(N). 

 And vice versa for if T(N)/F(N) diverges to infinity, 
then our run-time is a function BIGGER than F(N). 



Experimental Run-Time – Example 1 
 Consider the following table of data obtained from running an 

instance of an algorithm assumed to be cubic.   
 Decide if the Big-Oh estimate, O(N3) is accurate.   

 

 

 

 

 

 
 T(N)/F(N) = 0.017058/(100*100*100) = 1.0758  10-8 

 T(N)/F(N) = 17.058/(1000*1000*1000) = 1.0758  10-8 

 T(N)/F(N) = 2132.2464/(5000*5000*5000) = 1.0757  10-8 

 T(N)/F(N) = 17057.971/(10000*10000*10000) = 1.0757  10-8 

 T(N)/F(N) = 2132246.375/(50000*50000*50000) = 1.0757  10-8 

The calculated values converge  
to a positive constant  
(1.0757  10-8)  
–  so the estimate of O(n3)  
    is a good estimate.  
 

Run N T(N) 

1 100 0.017058 ms 

2 1000 17.058 ms 

3 5000 2132.2464 ms 

4 10000 17057.971 ms 

5 50000 2132246.375 ms 



Experimental Run-Time – Example 2 

 Consider the following table of data obtained from 
running an instance of an algorithm assumed to be 
quadratic.   
 Decide if the Big-Oh estimate, O(N2) is accurate.  

 
 
 
 
 
 
T(N)/F(N) = 0.00012/(100 * 100) = 1.6  10-8 
T(N)/F(N) = 0.03389/(1000 * 1000) = 3.389  10-8 
T(N)/F(N) = 10.6478/(10000 * 10000) = 1.064  10-7 
T(N)/F(N) = 2970.0177/(100000 * 100000) = 2.970  10-7 
T(N)/F(N) = 938521.971/(1000000 * 1000000) =9.385 10-7 

The values diverge,  
so O(n2) is an  
underestimate. 

Run N T(N) 
1 100 0.00012 ms 

2 1000 0.03389 ms 

3 10000 10.6478 ms 

4 100000 2970.0177 ms 

5 1000000 938521.971 ms 



Array Sum Algorithm 

 Let’s say we have 2 sorted lists of integers, 
 And we want to know if we can find a number in the 1st array 

when summed with a number in the 2nd array gives us our 
target value. 

 This is similar to the sorted list matching algorithm we talked 
about earlier, there are 3 solutions: 

 
1) Brute force look at each value in each array and see if the 

target sum is found  
 – O(n2) 

2) Look at each value in the 1st array (number1) and binary 
search for target –number1 in the 2nd array. 
 O(n logn) 

3) A smarter algorithm – O(n), where we only need to look at 
each value in each array once. 
 O(n) 



Linear Array Sum Algorithm 

 Linear Algorithm:  
 Target = 82 

We start 2 markers, 1 at the bottom of Array1, the other at 
the top of Array2 

Then if the sum of the values < Target, move marker 1 up, 
otherwise more marker 2 down, until we find the target 
sum. 

 
1 3 5 6 7 9 13 45 56 99 

5 8 14 28 69 75 88 92 93 94 

Array 1: 

Array 2: 

Sum = Target, Done! 



Determine if the Experimental Run-Time 
matches the Theoretical 

 Brute Force ArraySum Alg. 

 O(n2) 

 

 

 Binary Search ArraySum Alg. 

 O(n log n) 

 

 

 Linear ArraySum Alg. 

 O(n) 

Run N T(N) 

1 100,000 37 s 

2 200,000 149 s 

3 400,000 593 s 

Run N T(N) 

1 100,000 0.01 s 

2 200,000 0.023 s 

3 400,000 0.048 s 

Run N T(N) 

1 100,000 0.001 s 

2 200,000 0.001 s 

3 400,000 0.002 s 



Determine if the Experimental Run-Time 
matches the Theoretical 

Run N T(N) F(N) = N2 T(N)/F(N) 

1 100,000 37 s 100,002 3.7 x 10-7 

2 200,000 149 s 200,0002 3.7 x 10-7 

3 400,000 593 s 400,0002 3.7 x 10-7 

Run N T(N) F(N) = N logN T(N)/F(N) 

1 100,000 0.01 s 

2 200,000 0.023 s 

3 400,000 0.048 s 

Run N T(N) F(N) = N T(N)/F(N) 

1 100,000 0.001 s 

2 200,000 0.001 s 

3 400,000 0.002 s 

Since T(N)/F(N) converges  
to a value, 
We know O(F(N))  
was an accurate analysis. 

I’ll leave it as an exercise 
to determine if the other 
timing results verify the  
theoretical analysis. 



Experimental Run-Time  
Practice Problem 

 Given the following table, you have to 
determine what O(F(N)) would be, you are 
also given that it is either log n, n, or n2. 

Run N T(N) 

1 100 0.11 ms 

2 200 0.43 ms 

3 400 1.72 ms 

4 800 6.88 ms 

5 1600 27.54 ms 


