
Sorted list matching

&

Experimental run-Time

COP 3502

Code Tracing Example

 Here is an example from a previous
foundation exam:

 Question: Find the value of x in terms of n after
the following code segment below has executed.

You may assume that n is a positive even integer.

x = 0;

for (i = 1; i <= n*(8*n+8); i++) {

 for (j = n/2; j <=n; j++) {

 x = x + (n – j);

 }

}

Solved on the board

Sorted List Matching Problem – Approach #1

 Let’s compare 3 different solutions to this problem and
their runtimes.
 Problem: Given 2 sorted lists of names, output the names

common to both lists.
 Obvious – Brute Force - way to do this:

For each name on list #1:
1) Search for the current name in list #2.
2) If the name is found, output it.

 This isn’t leveraging the fact that we know the list is

sorted,
 it would take O(n) to do (1) and (2),
 multiplied by the n names in list#1 gives a total of O(n2)

Sorted List Matching Problem – Approach #2

 Let’s use the fact that the lists are sorted!
 For each name on list #1:

1) Search for the current name in list #2.

2) If the name is found, output it.

 For step (1) use a binary search.
 We know that this takes

O(log n) time.

 Since we need to do this N times for each name in
the first list,
 Our total run time would be?

 O(N log N)

Sorted List Matching Problem –
Approach #3

 Can we do better?
 We still haven’t used the fact that list #1 is sorted!

 Can we exploit this fact so that we don’t have to do
a full binary search for each name?

 List #1 List #2

 Albert Cari

 Brandon Carolyn

 Carolyn Chris

 Dan Fred

 Elton Graham

Sorted List Matching Problem – Approach #3

 Formal Version of the algorithm:

1) Start 2 “markers”, one for each list, at the beginning
of both lists.

2) Repeat the following until one marker has reached
the end of its list:

a) Compare the two names that the markers are pointing at.

b) If they are equal, output the name and advance BOTH
markers one spot.

 If they are NOT equal, simply advance the marker pointing
to the name that comes earlier alphabetically one spot.

Sorted List Matching Problem – Approach #3

 Algorithm Run-Time Analysis
 For each loop iteration, we advance at least one marker.
 The max number of iterations then , would be the total

number of names on both list2, 2N.
 For each iteration, we are doing a constant amount of work.

Essentially a comparison, and/or outputting a name.

 Thus, our algorithm runs in O(N) time – an improvement.

 Can we do better?
 No, because we need to at least read each name in both lists,

if we skip names, on BOTH lists we cannot deduce whether
we could have matches or not.

Experimental Run-Time

 We can verify our algorithm analysis through
running actual code

 By comparing the experimental running time of a
piece of code for different input sizes to the
theoretical run-time.

 Assume T(N) is the experimental running time
of a piece of code,

 We’d like to see if T(N) is proportional to F(N) within
a constant,

Where we’ve previously determined the algorithm to be
O(F(N))

Experimental Run-Time
 One way to see if O(F(n)) is an accurate algorithmic

analysis,
 Is to compute T(N)/F(N) for a range of different values for N

Commonly spaced out by a factor of 2.

 If the values for T(N)/F(N) stay relatively constant,
then our guess for the running time O(F(N)) was good.

 Otherwise, if these T(N)/F(N) values, converge to 0
our run-time is more accurately described by a function smaller

than F(N).

 And vice versa for if T(N)/F(N) diverges to infinity,
then our run-time is a function BIGGER than F(N).

Experimental Run-Time – Example 1
 Consider the following table of data obtained from running an

instance of an algorithm assumed to be cubic.
 Decide if the Big-Oh estimate, O(N3) is accurate.

 T(N)/F(N) = 0.017058/(100*100*100) = 1.0758 10-8

 T(N)/F(N) = 17.058/(1000*1000*1000) = 1.0758 10-8

 T(N)/F(N) = 2132.2464/(5000*5000*5000) = 1.0757 10-8

 T(N)/F(N) = 17057.971/(10000*10000*10000) = 1.0757 10-8

 T(N)/F(N) = 2132246.375/(50000*50000*50000) = 1.0757 10-8

The calculated values converge
to a positive constant
(1.0757 10-8)
– so the estimate of O(n3)
 is a good estimate.

Run N T(N)

1 100 0.017058 ms

2 1000 17.058 ms

3 5000 2132.2464 ms

4 10000 17057.971 ms

5 50000 2132246.375 ms

Experimental Run-Time – Example 2

 Consider the following table of data obtained from
running an instance of an algorithm assumed to be
quadratic.
 Decide if the Big-Oh estimate, O(N2) is accurate.

T(N)/F(N) = 0.00012/(100 * 100) = 1.6 10-8
T(N)/F(N) = 0.03389/(1000 * 1000) = 3.389 10-8
T(N)/F(N) = 10.6478/(10000 * 10000) = 1.064 10-7
T(N)/F(N) = 2970.0177/(100000 * 100000) = 2.970 10-7
T(N)/F(N) = 938521.971/(1000000 * 1000000) =9.385 10-7

The values diverge,
so O(n2) is an
underestimate.

Run N T(N)
1 100 0.00012 ms

2 1000 0.03389 ms

3 10000 10.6478 ms

4 100000 2970.0177 ms

5 1000000 938521.971 ms

Array Sum Algorithm

 Let’s say we have 2 sorted lists of integers,
 And we want to know if we can find a number in the 1st array

when summed with a number in the 2nd array gives us our
target value.

 This is similar to the sorted list matching algorithm we talked
about earlier, there are 3 solutions:

1) Brute force look at each value in each array and see if the

target sum is found
 – O(n2)

2) Look at each value in the 1st array (number1) and binary
search for target –number1 in the 2nd array.
 O(n logn)

3) A smarter algorithm – O(n), where we only need to look at
each value in each array once.
 O(n)

Linear Array Sum Algorithm

 Linear Algorithm:
 Target = 82

We start 2 markers, 1 at the bottom of Array1, the other at
the top of Array2

Then if the sum of the values < Target, move marker 1 up,
otherwise more marker 2 down, until we find the target
sum.

1 3 5 6 7 9 13 45 56 99

5 8 14 28 69 75 88 92 93 94

Array 1:

Array 2:

Sum = Target, Done!

Determine if the Experimental Run-Time
matches the Theoretical

 Brute Force ArraySum Alg.

 O(n2)

 Binary Search ArraySum Alg.

 O(n log n)

 Linear ArraySum Alg.

 O(n)

Run N T(N)

1 100,000 37 s

2 200,000 149 s

3 400,000 593 s

Run N T(N)

1 100,000 0.01 s

2 200,000 0.023 s

3 400,000 0.048 s

Run N T(N)

1 100,000 0.001 s

2 200,000 0.001 s

3 400,000 0.002 s

Determine if the Experimental Run-Time
matches the Theoretical

Run N T(N) F(N) = N2 T(N)/F(N)

1 100,000 37 s 100,002 3.7 x 10-7

2 200,000 149 s 200,0002 3.7 x 10-7

3 400,000 593 s 400,0002 3.7 x 10-7

Run N T(N) F(N) = N logN T(N)/F(N)

1 100,000 0.01 s

2 200,000 0.023 s

3 400,000 0.048 s

Run N T(N) F(N) = N T(N)/F(N)

1 100,000 0.001 s

2 200,000 0.001 s

3 400,000 0.002 s

Since T(N)/F(N) converges
to a value,
We know O(F(N))
was an accurate analysis.

I’ll leave it as an exercise
to determine if the other
timing results verify the
theoretical analysis.

Experimental Run-Time
Practice Problem

 Given the following table, you have to
determine what O(F(N)) would be, you are
also given that it is either log n, n, or n2.

Run N T(N)

1 100 0.11 ms

2 200 0.43 ms

3 400 1.72 ms

4 800 6.88 ms

5 1600 27.54 ms

