SUUCF

SUMMATIONS

COP 3502

Summations

- Why do we need to go over summations?
- This isn't a math class!
- Many times, analyzing an algorithm to determine its efficiency requires adding up many numbers.
- This can be represented by a summation

Summations

- For example,
- If we had the sequence $1+2+3+4+5$
- This can be represented by the following summation:

Stopping condition

What we're summing

Does this remind you of anything we've seen in code?

```
int sum = 0;
for (i=1; i<= 5; i++)
    sum += i;
```

Starting condition

Summations

If we're given a summation,

$$
\sum_{k=2}^{14} 2 k+1
$$

$$
\text { Total = } 0+7+9+\ldots 29
$$

$$
k=2 \longmapsto 2 k+1=5
$$

$$
k=3 \longmapsto 2 k+1=7
$$

$$
k=4 \longmapsto 2 k+1=9
$$

$$
k=14 \longmapsto 2 k+1=29
$$

We can evaluate it in this way:

1) Create a running total set to 0 .
2) Set the variable in the bottom (k) of the sum equal to the initial value given, (2)
3) Plug this value into the expression, $(2 k+1)$
4) Add this to your running "total".
5) If your variable equals the last value listed, (14) stop and your answer is what is stored in total.
-- Otherwise plug in the next integer value for the variable and go to step 3.

In code we would have this:

```
int total = 0;
for (k=2; k<=14; k++)
    total += (2*k+1);
```


Summations

In general we would say the following:
$\sum_{k=a}^{b} f(k)=f(a)+f(a+1)+f(a+2)+\ldots+f(b)$
Let's use our example from before, $\sum_{k=2}^{14} 2 k+1$

- Where $\mathrm{f}(\mathrm{k})=2 \mathrm{k}+1$ 14
$\sum f(k)=f(2)+f(3)+f(4)+\ldots+f(14)$
$=5+7+9+\cdots+29$ But what if we don't want to add up all these \#'s?
We can apply our formulas for solving summations...

Summations

Formula 1 - can take out constants

- The first formula we have is for a summation with just a constant.
\sum^{b} - Notice that c does not change with k ,
$>$ so it's constant
- With constants we can pull them outside the summation:

$$
\sum_{k=a}^{b} c \quad \square c \sum_{k=a}^{b} 1
$$

Summations

Formula 2 - Summing a constant
 $\sum_{k=a}^{b} c=c \sum_{k=a}^{b} 1=(b-a+1) c$

- Let's look at a specific example

$$
\sum_{i=3}^{7} 5=5 \sum_{i=3}^{7} 1=5 *(7-3+1)
$$

Summations

Formula 3 - Sum of i

If we look at a more difficult summation

- (that we saw last time) we can derive the formula for it using a clever trick.

$S=1+2+3+4+\ldots+(n-1)+n$
$+S=n+(n-1)+(n-2)+\ldots+2+1$
$2 S=(n+1)+(n+1)+(n+1)+\ldots+(n+1)$
$2 S=n(n+1)$
$S=n(n+1) / 2$

Summations

Now let's look at a few quick uses of this formula:

$$
\sum_{i=1}^{n} i=n(n+1) / 2
$$

$\sum_{k=1}^{100} \mathrm{k}=$
???

$$
\sum_{k=1}^{2 n} k=
$$

$\sum_{k=1}^{4 n-1} \mathrm{k}=$

Summations

Formula 4 - Splitting up expressions

- You can split up the terms in a summation into separate summations

$$
\sum_{k=a}^{b}(\mathrm{f}(\mathrm{k})+\mathrm{g}(\mathrm{k}))=\sum_{\mathrm{k}=\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{k})+\sum_{\mathrm{k}=\mathrm{a}}^{\mathrm{b}} \mathrm{~g}(\mathrm{k})
$$

$$
\sum_{k=1}^{n}(\mathrm{k}+3)=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{k}+\sum_{\mathrm{k}=1}^{\mathrm{n}} 3=\frac{\mathrm{n}(\mathrm{n}+1)}{2}+3 \mathrm{n}=\frac{\mathrm{n}^{2}+7 \mathrm{n}}{2}
$$

Summations

Formula 5 - Change start to 1

Sometime summations don't start from 1 and we need them to to apply our formula

- So this is what we can do:

$$
\sum_{k=20}^{40} \mathrm{f}(\mathrm{k})
$$

- In general our formula looks like this:

$$
\sum_{k=a}^{b} f(k)=\sum_{k=1}^{b} f(k)-\sum_{k=1}^{a-1} f(k)
$$

Summations

So we now we have all the pieces to solve our original example: $\sum_{k=2}^{14} 2 k+1$

- Formula 4 - split up the terms:

$$
\sum_{k=a}^{b}(\mathrm{f}(\mathrm{k})+\mathrm{g}(\mathrm{k}))=\sum_{\mathrm{k}=\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{k})+\sum_{\mathrm{k}=\mathrm{a}}^{\mathrm{b}} \mathrm{~g}(\mathrm{k})
$$

$$
=\sum_{k=2}^{14} 2 k+\sum_{k=2}^{14} 1
$$

Summations

$$
=\sum_{k=2}^{14} 2 k+\sum_{k=2}^{14} 1
$$

- Take out the constants:

$$
=2 \sum_{k=2}^{14} k+\sum_{k=2}^{14} 1
$$

Summations

$=2 \sum_{k=2}^{14} k+\sum_{k=2}^{14} 1$
Formula 1 for the right side: $c \sum_{k=a}^{b} 1=(b-a+1) c$

$$
\sum_{k=2}^{14} 1=14-2+1=13
$$

- And we get: $\quad 2 \sum_{k=1}^{14} k+13$

Summations

$$
2 \sum_{k=2}^{14} k+13
$$

- Formula 4 to change start of left side to 1:

$$
\sum_{k=20}^{40} f(k)=\sum_{k=1}^{40} f(k)-\sum_{k=1}^{19} f(k)
$$

$$
2\left(\sum_{k=1}^{14} k-\sum_{k=1}^{2} k\right)+13
$$

Summations

$$
2\left(\sum_{k=1}^{14} k-\sum_{k=1}^{2} k\right)+13
$$

Apply Formula 3 to each sum of k :

$$
\sum_{i=1}^{n} i=n(n+1) / 2
$$

2(14*15/2-2*3/2)
" = 14* $15-2 * 3=210$

Don't forget about +13!!

Final answer $=210+13=223$

Summations

- Closed form solutions
- Not all summations result in a number for an answer.
- Often the answer has one or more variables in it (usually n for our examples).
- This is called the "closed form" of the summation

Summations

- Examples on the board of finding the closed form of summations.

