
Summations

COP 3502

Summations

 Why do we need to go over summations?

 This isn’t a math class!

 Many times, analyzing an algorithm to determine
its efficiency requires adding up many numbers.

 This can be represented by a summation

Summations

 For example,

 If we had the sequence 1+2+3+4+5

 This can be represented by the following summation:

int sum = 0;

for (i=1; i<= 5; i++)

 sum += i;

Starting condition

Stopping condition

What we’re
summing

Does this remind you of anything
we’ve seen in code?

Summations

 If we’re given a
summation,

We can evaluate it in this way:

1) Create a running total set to 0.

2) Set the variable in the bottom (k) of the sum
equal to the initial value given, (2)

3) Plug this value into the expression, (2k+1)

4) Add this to your running “total”.

5) If your variable equals the last value listed, (14)
stop and your answer is what is stored in total.

-- Otherwise plug in the next integer value for the
variable and go to step 3.

Total = 0

k = 2 2k+1 = 5

Total = 5

k = 3 2k+1 = 7

k = 4 2k+1 = 9

k = 14 2k+1 = 29

+7

… int total = 0;

for (k=2; k<=14; k++)

 total += (2*k+1);

In code we would have this:

+9 +… 29

Summations

 In general we would say the following:

 Let’s use our example from before,

 Where f(k) = 2k + 1

But what if we don’t want
to add up all these #’s?
We can apply our formulas
for solving summations…

Summations

 The first formula we have is for a summation
with just a constant.

 Notice that c does not change with k,

so it’s constant

 With constants we can pull them outside the
summation:

Formula 1 – can take out constants

Summations

 Let’s look at a specific example

=

=

Formula 2 – Summing a constant

Summations

 If we look at a more difficult summation
 (that we saw last time) we can derive the formula for

it using a clever trick.

 S = 1+2+3+4+…+(n-1)+n

+ S = n+(n-1)+(n-2)+…+2+1

2S = (n+1)+ (n+1)+ (n+1)+…+ (n+1)

2S = n(n+1)

 S = n(n+1)/2

Formula 3 – Sum of i

Summations

 Now let’s look at a few quick uses of this formula:

= n(n+1)/2

???

???

???

Summations

 You can split up the terms in a summation into
separate summations

Formula 4 – Splitting up expressions

Summations

 Sometime summations don’t start from 1 and we
need them to to apply our formula

 So this is what we can do:

 In general our formula looks like this:

Formula 5 – Change start to 1

Summations

 So we now we have all the pieces to solve our
original example:

 Formula 4 – split up the terms:

Summations

 Take out the constants:

Summations

 Formula 1 for the right side:

 = 14-2+1 = 13

 And we get:

Summations

 Formula 4 to change start of left side to 1:

+13

Summations

 Apply Formula 3 to each sum of k:

 2(14*15/2 – 2*3/2)

 = 14*15-2*3 = 210

 Final answer = 210 + 13 = 223

+13

= n(n+1)/2

Don’t forget about +13!!

Summations

 Closed form solutions

 Not all summations result in a number for an
answer.

 Often the answer has one or more variables in it
(usually n for our examples).

 This is called the “closed form” of the summation

Summations

 Examples on the board of finding the closed
form of summations.

