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Algorithm Analysis 

 We have looked at a few number of 
algorithms in class so far 

 But we haven’t looked at how to judge the 
efficiency or speed of an algorithm,  

which is one of the goals of this class. 

 We will use order notation to approximate 2 
things about algorithms: 

 How much time they take 

 How much memory (space) they use. 



Algorithm Analysis 

 The first thing to realize is that it will be nearly 
impossible to exactly figure out how much time 
an algorithm will take on a particular computer. 
 Each algorithm instruction gets translated into smaller 

machine instructions 
Each of which take various amounts of time to execute on 

different computers. 

 Also, we want to judge the algorithms independent of 
their specific implementation  
An algorithm’s run time can be language independent 

 Therefore, rather than figuring out an algorithm’s 
exact running time 
 We will only want an approximation. 



Algorithm Analysis 

 The type of approximation we will be looking 
for is a Big-O approximation 

 A type of order notation 

 Used to describe the limiting behavior of a 
function, when the argument approaches a large 
value. 

 In simpler terms a Big-O approximation is:  

An Upper bound on the growth rate of a function. 

Lower bound, and upper&lower bounds, and more 
involved proofs will be discussed in CS2. 



Big-O 

 Assume: 
 Each statement and each comparison in C takes some 

constant time. 

 Time and space complexity will be a function of: 
 The input size (usually referred to as n) 

 Since we are going for an approximation,  
 we will make the following two simplifications in 

counting the # of steps an algorithm takes: 
1) Eliminate any term whose contribution to the total 

ceases to be significant as n becomes large 

2) Eliminate constant factors. 



Big-O 
 Thus, if we count the # of steps an algorithm takes 

is 4n2 + 3n - 5, then we will: 

1) Ignore 3n-5 because that accounts for a small number of 
steps as n gets large (waaay less than n2) 

2) Eliminate the constant factor of 4 in front of the n2 term. 

 In doing so, we conclude that the algorithm takes O(n2) 
steps. 



Big-O 
 Only consider the most significant term 

 So for :  4n2 + 3n – 5, we only look at 4n2 

 Then, we get rid of the constant 4* 

 And we get O(n2) 



Big-O 
 Why can we do this? 

 Because as n gets very large, the most significant term 
far outweighs the less significant terms and the 
constants. 

n 4n2 3n 10 

1 4 3 10 

10 400 30 10 

100 40,000 300 10 

1,000 4,000,000 3,000 10 

10,000 400,000,000 30,000 10 

100,000 40,000,000,000 300,000 10 

1,000,000 4,000,000,000,000 3,000,000 10 



Big-O 
 Formal Definition 
 F(n) is O[g(n)] if there exists positive integers c and N, 

such that f(n) <= c*g(n) for all n>=N. 
Think about the 2 functions we just had: 

– f(n) = 4n2 + 3n + 10, and g(n) = n2 

– We agreed that O(4n2 + 3n + 10) = O(n2) 

– Which means we agreed that the order of f(n) is O(g(n)) 

 

So then what we were actually saying is… 

f(n) is big-O of g(n), if there is a c (c is a constant) 

Such that f(n) is not larger than c*g(n) for sufficiently large 
values of n (greater than N) 

 Let’s see if we can determine c and N. 



Big-O 
 Formal Definition 

 F(n) is O[g(n)] if there exists positive integers c and N, 
such that f(n) <= c*g(n) for all n>=N. 

Does there exist some c that would make the following 
statement true? 

f(n) <= c*g(n) 

OR for our example:  4n2 + 3n + 10 <= c*n2 

 

If there does exist this c, then f(n) is O(g(n)) 



Big-O 
 Formal Definition 
 F(n) is O[g(n)] if there exists positive integers c and N, 

such that f(n) <= c*g(n) for all n>=N. 
Does there exist some c that would make the following 

statement true? 

4n2 + 3n + 10 <= c*n2 

 

Clearly c = 4 will not work: 

4n2 + 3n + 10 <= 4n2 

 

Will c = 5 work? 

4n2 + 3n + 10 <= 5n2 

Let’s plug in different values of n to check… 

 



Big-O 

 Formal Definition 

 F(n) is O[g(n)] if there exists positive integers c and N, 
such that f(n) <= c*g(n) for all n>=N. 

Does c = 5, make the following statement true? 

4n2 + 3n + 10 <= 5n2  ?? 

Let’s plug in different values of n to check… 

 n 4n2 + 3n + 10 5n2 

1 4(1) + 3(1) + 10 = 17 5(1) = 5 

2 4(4) + 3(2) + 10 = 32 5(4) = 20 

3 4(9) + 3(3) + 10 = 55 5(9) = 45 

4 4(16) + 3(4) + 10 = 86 5(16) = 80 

5 4(25) + 3(5) + 10 = 125 5(25) = 125 

6 4(36) + 3(6) + 10 = 190 6(36) = 216 

For c = 5, if n >= 5, 
4n2 + 3n + 10 <= c*n2 
 
Therefore,  4n2 + 3n + 10  
is O(n2) 
 

For c = 5, if n >= 5, 
f(n) <= c*g(n) 
 
Therefore,  
f(n) is O(g(n)) 



Big-O 

 Formal Definition 

 F(n) is O[g(n)] if there exists positive integers c and N, 
such that f(n) <= c*g(n) for all n>=N. 

 

 In Summary, 

 O[g(n)] tells us that c*g(n) is an upper bound on f(n). 

c*g(n) is an upper bound on the running time of the 
algorithm, 

where the number of operations is, at worst, proportional to 
g(n) for large values of n. 



Big-O 

 Some basic examples: 
 What is the Big-O of the following functions: 
1) f(n) = 4n2 + 3n + 10 
 O(n2) 

2) f(n) = 76,756n2 + 427,913,100n, + 700 
 O(n2) 

3) 754n8 – 62n5 – 71562n3 + 3n2 – 5 
 O(n8) 

4) f(n) = 42n4*(12n6 – 73n2 + 11) 
 O(n10) 

5) f(n) = 75n*logn – 415 
 O(n*logn) 



Big-O Notation 
 Quick Example of Analyzing Code: 
 (This is to demonstrate how to use Big-O, we’ll do more of 

this next time.) 
 

for (k=1; k<=n/2; k++) { 

   sum = sum + 5; 

} 

 

for (j=1; j<=n*n; j++) { 

   delta = delta + 1; 

} 

How many times 
does this loop run? 

How many times 
does this loop run? 

n/2 

n2 

1 operation 

1 operation 

 So we get: 

 1 operation * n/2 iterations AND 

 1 operation * n2 operations 

 Since the loops aren’t nested we can just add to get:  n2 + n/2 operations 

 What is this Big-O? O(n2) 



Big-O Notation 
 Common orders (listed from slowest to fastest growth) 

Function Name 

1 Constant 

log n Logarithmic 

n Linear 

n log n Poly-Log 

n2 Quadratic 

n3 Cubic 

2n Exponential 

n! Factorial 



Big-O Notation 

 O(1) or “Order One”: Constant Time 

 Does NOT mean that it only takes one operation 

 DOES mean that the amount of work doesn’t 
change as n gets bigger 

 “constant work” 

 An example would be inserting an element into 
the front of a linked list 

No matter how big the list is, it’s a constant number of 
operations. 



Big-O Notation 
 O(n) or Order n:  Linear time 
 Does NOT mean that it takes n operations 

it may take 7n + 5 operations 

 DOES mean that the amount of actual work is proportional 
to the input size n 

 Example, if the input size doubles, the running time also 
doubles 

 “work grows at a linear rate” 

 An example, inserting an element at the END of a linked 
list, 
We have to traverse to the end of the linked list which requires us 

to move an iterator approximately n times and then do a constant 
number of operations once we get there. 



Big-O Notation 

 O(n log n) 

 Only slightly worse than O(n) time 

O(n log n) will be much less than O(n2) 

This is the running time for the better sorting 
algorithms we will go over later in the semester. 

 O(log n) or “Order log n”:  Logarithmic time 

 Any algorithm that halves the data remaining to 
be processed on each iteration of a loop will be an 
O(log n) algorithm. 

 For example, binary search 



Big O Notation 

 O(n2) or “Order n2”:  Quadratic time 

 for (i = 0; i < n; i++) 

for (j = 0; j < n; j++)  This would be O(n2) 
– a constant number of operations 

 

 



Big O Notation 

 O(2n) or “Order 2n”:  Exponential time 

 Input size bigger than 40 or 50 become 
unmanageable, more theoretical than practical 
interest. 

 

 O(n!):  worse than exponential! 

 Input sizes bigger than 10 will take a long time. 
 

 



Average Case and Worst Case 
 When we are talking about the running time 

of an algorithm, 

 you’ll notice that depending on the input – a 
program may run more quickly or slowly. 

 For example, Insertion sort  

 (which we haven’t gone over yet…) 

 will run much for quickly for an already sorted list 
of numbers 

 than if we give it a list of numbers in descending 
order. 

 



Average Case and Worst Case 
 So, when we analyze the running times of 

algorithms 
 we must acknowledge the fact that these running 

times may vary based on the actual type of input to 
the algorithm, not just the size 
 

 In our analysis we are typically concerned with 2 
things: 

1) What is the worst possible running time an algorithm can 
achieve, given any input 

AND 
2) What is the average, or expected running time of an 

algorithm, averaged over all possible inputs. 

 



Average Case and Worst Case 
 In our analysis we are typically concerned with 2 things: 

1) What is the worst possible running time an algorithm can achieve, 
given any input 

AND 
2) What is the average, or expected running time of an algorithm, 

averaged over all possible inputs. 

 As you might imagine, #2 is very useful but might be 
difficult to compute. 

 For #1, you usually have to figure out what input will 
cause the algorithm to act most inefficiently 
 For example, a descending list in insertion sort. 

 Then, simply calculate how long the algorithm would take to 
run based on that worst-case input.  

 



Average Case and Worst Case 
 However, if we can show that 

The Best Case – (i.e. the fastest possible running of an 
algorithm on any input) 

AND 

The Worst Case 

Are the same big-O bound,  

THEN we know the average case is that big-O bound. 

 



Average Case and Worst Case 

 When computing the average case running time 
 We may assume that all inputs are random, or equally 

likely 

 However, 
This may not always be the case 

For example, if the user is given a menu of several choices, it 
may be the case that some choices are chosen far more 
frequently than others. 

 In this case, 
assuming that each case is chosen equally may not give you an 

accurate average case running time. 



Using Order Notation to Estimate Time 

 Let’s say you are told: 
 Algorithm A runs in O(n) time, 

 and for an input size of 10, the algorithm runs in 2 ms. 

 Then, you can expect it to take 100ms to run on an input size 
of 500. 

 

 So in general, if you know an algorithm is O(f(n)), 
 Assume that the exact running time is c*f(n), where c is some 

constant 

 Then given an input size and a running time, you should be 
able solve for c. 



Practice Problems 
1) Algorithm A runs in O(n2) time, and for an input 

size of 4, the algorithm runs in 10 ms. 

 How long can you expect it to take to run on an 
input size of 16? 

 Given O(f(n)), we know    c*f(n) = time in ms 

 So we’re given f(n) = n2 and n = 4, and time = 10ms 

 So we can solve for c:  c*42 = 10ms, c = 10/16 

 Now in the second part, n = 16 and we want to find the 
time, now we can plug in c: 

 (10/16)*162 = 160 ms  



Practice Problems 

1) Algorithm A runs in O(log2n) time, and for an 
input size of 16, the algorithm runs in 28 ms. 

 How long can you expect it to take to run on an 
input size of 64? 

 C*log2(16) = 28ms    4c = 28ms  c = 7 

 

 If n = 64, let’s solve for time: 

 7*log264 = time ms 

 7*6 = 42 ms 



Reasonable vs Unreasonable 
Algorithms 

 One thing we can use order notation for is  

 to decide whether or not an algorithm can be 
implemented in practice and run in a reasonable 
amount of time. 

 In a very general sense, 

algorithms that run in polynomial time with respect to the 
input, are considered to be REASONABLE. 

– So this would include any algorithm that runs in O(nk) time, where 
k is some constant. 

– In most everyday problems, k is never more than 3 or so 

– While O(n3) algorithms are quite slow for larger input sizes, they 
will still finish in a reasonable amount of time. 



Reasonable vs Unreasonable 
Algorithms 

 However, there are mathematical functions 
that are “larger” than polynomials. 

 In particular, exponential functions grow much 
more quickly than polynomials. 

Exponential, meaning it runs in O(cn) time, where c is 
some constant. 

– It is considered to be an UNREASONABLE algorithm. 

– Running such an algorithm would take too much time for any 
substantial value of n. 

– For example, consider computing 2100. 



Reasonable vs Unreasonable 
Algorithms 

 Often times, exhaustive search algorithms are 
UNREASONABLE. 
 In a chess game, one way for a computer player to 

choose a move is to map out all possible moves by the 
computer and the opponent, several moves into the 
future. 
Then by judging which would lead to a better board position, 

the computer would choose the best move. 
– Unfortunately, there are too many board positions to consider 

them all 
– So such an algorithm would be unreasonable. 
– (Most computer chess programs only search a few possible 

moves, not all of them.  And only consider a few of the 
opponents responses.) 


