
Intro to Algorithm

analysis

COP 3502

Algorithm Analysis

 We have looked at a few number of
algorithms in class so far

 But we haven’t looked at how to judge the
efficiency or speed of an algorithm,

which is one of the goals of this class.

 We will use order notation to approximate 2
things about algorithms:

 How much time they take

 How much memory (space) they use.

Algorithm Analysis

 The first thing to realize is that it will be nearly
impossible to exactly figure out how much time
an algorithm will take on a particular computer.
 Each algorithm instruction gets translated into smaller

machine instructions
Each of which take various amounts of time to execute on

different computers.

 Also, we want to judge the algorithms independent of
their specific implementation
An algorithm’s run time can be language independent

 Therefore, rather than figuring out an algorithm’s
exact running time
 We will only want an approximation.

Algorithm Analysis

 The type of approximation we will be looking
for is a Big-O approximation

 A type of order notation

 Used to describe the limiting behavior of a
function, when the argument approaches a large
value.

 In simpler terms a Big-O approximation is:

An Upper bound on the growth rate of a function.

Lower bound, and upper&lower bounds, and more
involved proofs will be discussed in CS2.

Big-O

 Assume:
 Each statement and each comparison in C takes some

constant time.

 Time and space complexity will be a function of:
 The input size (usually referred to as n)

 Since we are going for an approximation,
 we will make the following two simplifications in

counting the # of steps an algorithm takes:
1) Eliminate any term whose contribution to the total

ceases to be significant as n becomes large

2) Eliminate constant factors.

Big-O
 Thus, if we count the # of steps an algorithm takes

is 4n2 + 3n - 5, then we will:

1) Ignore 3n-5 because that accounts for a small number of
steps as n gets large (waaay less than n2)

2) Eliminate the constant factor of 4 in front of the n2 term.

 In doing so, we conclude that the algorithm takes O(n2)
steps.

Big-O
 Only consider the most significant term

 So for : 4n2 + 3n – 5, we only look at 4n2

 Then, we get rid of the constant 4*

 And we get O(n2)

Big-O
 Why can we do this?

 Because as n gets very large, the most significant term
far outweighs the less significant terms and the
constants.

n 4n2 3n 10

1 4 3 10

10 400 30 10

100 40,000 300 10

1,000 4,000,000 3,000 10

10,000 400,000,000 30,000 10

100,000 40,000,000,000 300,000 10

1,000,000 4,000,000,000,000 3,000,000 10

Big-O
 Formal Definition
 F(n) is O[g(n)] if there exists positive integers c and N,

such that f(n) <= c*g(n) for all n>=N.
Think about the 2 functions we just had:

– f(n) = 4n2 + 3n + 10, and g(n) = n2

– We agreed that O(4n2 + 3n + 10) = O(n2)

– Which means we agreed that the order of f(n) is O(g(n))

So then what we were actually saying is…

f(n) is big-O of g(n), if there is a c (c is a constant)

Such that f(n) is not larger than c*g(n) for sufficiently large
values of n (greater than N)

 Let’s see if we can determine c and N.

Big-O
 Formal Definition

 F(n) is O[g(n)] if there exists positive integers c and N,
such that f(n) <= c*g(n) for all n>=N.

Does there exist some c that would make the following
statement true?

f(n) <= c*g(n)

OR for our example: 4n2 + 3n + 10 <= c*n2

If there does exist this c, then f(n) is O(g(n))

Big-O
 Formal Definition
 F(n) is O[g(n)] if there exists positive integers c and N,

such that f(n) <= c*g(n) for all n>=N.
Does there exist some c that would make the following

statement true?

4n2 + 3n + 10 <= c*n2

Clearly c = 4 will not work:

4n2 + 3n + 10 <= 4n2

Will c = 5 work?

4n2 + 3n + 10 <= 5n2

Let’s plug in different values of n to check…

Big-O

 Formal Definition

 F(n) is O[g(n)] if there exists positive integers c and N,
such that f(n) <= c*g(n) for all n>=N.

Does c = 5, make the following statement true?

4n2 + 3n + 10 <= 5n2 ??

Let’s plug in different values of n to check…

 n 4n2 + 3n + 10 5n2

1 4(1) + 3(1) + 10 = 17 5(1) = 5

2 4(4) + 3(2) + 10 = 32 5(4) = 20

3 4(9) + 3(3) + 10 = 55 5(9) = 45

4 4(16) + 3(4) + 10 = 86 5(16) = 80

5 4(25) + 3(5) + 10 = 125 5(25) = 125

6 4(36) + 3(6) + 10 = 190 6(36) = 216

For c = 5, if n >= 5,
4n2 + 3n + 10 <= c*n2

Therefore, 4n2 + 3n + 10
is O(n2)

For c = 5, if n >= 5,
f(n) <= c*g(n)

Therefore,
f(n) is O(g(n))

Big-O

 Formal Definition

 F(n) is O[g(n)] if there exists positive integers c and N,
such that f(n) <= c*g(n) for all n>=N.

 In Summary,

 O[g(n)] tells us that c*g(n) is an upper bound on f(n).

c*g(n) is an upper bound on the running time of the
algorithm,

where the number of operations is, at worst, proportional to
g(n) for large values of n.

Big-O

 Some basic examples:
 What is the Big-O of the following functions:
1) f(n) = 4n2 + 3n + 10
 O(n2)

2) f(n) = 76,756n2 + 427,913,100n, + 700
 O(n2)

3) 754n8 – 62n5 – 71562n3 + 3n2 – 5
 O(n8)

4) f(n) = 42n4*(12n6 – 73n2 + 11)
 O(n10)

5) f(n) = 75n*logn – 415
 O(n*logn)

Big-O Notation
 Quick Example of Analyzing Code:
 (This is to demonstrate how to use Big-O, we’ll do more of

this next time.)

for (k=1; k<=n/2; k++) {

 sum = sum + 5;

}

for (j=1; j<=n*n; j++) {

 delta = delta + 1;

}

How many times
does this loop run?

How many times
does this loop run?

n/2

n2

1 operation

1 operation

 So we get:

 1 operation * n/2 iterations AND

 1 operation * n2 operations

 Since the loops aren’t nested we can just add to get: n2 + n/2 operations

 What is this Big-O? O(n2)

Big-O Notation
 Common orders (listed from slowest to fastest growth)

Function Name

1 Constant

log n Logarithmic

n Linear

n log n Poly-Log

n2 Quadratic

n3 Cubic

2n Exponential

n! Factorial

Big-O Notation

 O(1) or “Order One”: Constant Time

 Does NOT mean that it only takes one operation

 DOES mean that the amount of work doesn’t
change as n gets bigger

 “constant work”

 An example would be inserting an element into
the front of a linked list

No matter how big the list is, it’s a constant number of
operations.

Big-O Notation
 O(n) or Order n: Linear time
 Does NOT mean that it takes n operations

it may take 7n + 5 operations

 DOES mean that the amount of actual work is proportional
to the input size n

 Example, if the input size doubles, the running time also
doubles

 “work grows at a linear rate”

 An example, inserting an element at the END of a linked
list,
We have to traverse to the end of the linked list which requires us

to move an iterator approximately n times and then do a constant
number of operations once we get there.

Big-O Notation

 O(n log n)

 Only slightly worse than O(n) time

O(n log n) will be much less than O(n2)

This is the running time for the better sorting
algorithms we will go over later in the semester.

 O(log n) or “Order log n”: Logarithmic time

 Any algorithm that halves the data remaining to
be processed on each iteration of a loop will be an
O(log n) algorithm.

 For example, binary search

Big O Notation

 O(n2) or “Order n2”: Quadratic time

 for (i = 0; i < n; i++)

for (j = 0; j < n; j++) This would be O(n2)
– a constant number of operations

Big O Notation

 O(2n) or “Order 2n”: Exponential time

 Input size bigger than 40 or 50 become
unmanageable, more theoretical than practical
interest.

 O(n!): worse than exponential!

 Input sizes bigger than 10 will take a long time.

Average Case and Worst Case
 When we are talking about the running time

of an algorithm,

 you’ll notice that depending on the input – a
program may run more quickly or slowly.

 For example, Insertion sort

 (which we haven’t gone over yet…)

 will run much for quickly for an already sorted list
of numbers

 than if we give it a list of numbers in descending
order.

Average Case and Worst Case
 So, when we analyze the running times of

algorithms
 we must acknowledge the fact that these running

times may vary based on the actual type of input to
the algorithm, not just the size

 In our analysis we are typically concerned with 2
things:

1) What is the worst possible running time an algorithm can
achieve, given any input

AND
2) What is the average, or expected running time of an

algorithm, averaged over all possible inputs.

Average Case and Worst Case
 In our analysis we are typically concerned with 2 things:

1) What is the worst possible running time an algorithm can achieve,
given any input

AND
2) What is the average, or expected running time of an algorithm,

averaged over all possible inputs.

 As you might imagine, #2 is very useful but might be
difficult to compute.

 For #1, you usually have to figure out what input will
cause the algorithm to act most inefficiently
 For example, a descending list in insertion sort.

 Then, simply calculate how long the algorithm would take to
run based on that worst-case input.

Average Case and Worst Case
 However, if we can show that

The Best Case – (i.e. the fastest possible running of an
algorithm on any input)

AND

The Worst Case

Are the same big-O bound,

THEN we know the average case is that big-O bound.

Average Case and Worst Case

 When computing the average case running time
 We may assume that all inputs are random, or equally

likely

 However,
This may not always be the case

For example, if the user is given a menu of several choices, it
may be the case that some choices are chosen far more
frequently than others.

 In this case,
assuming that each case is chosen equally may not give you an

accurate average case running time.

Using Order Notation to Estimate Time

 Let’s say you are told:
 Algorithm A runs in O(n) time,

 and for an input size of 10, the algorithm runs in 2 ms.

 Then, you can expect it to take 100ms to run on an input size
of 500.

 So in general, if you know an algorithm is O(f(n)),
 Assume that the exact running time is c*f(n), where c is some

constant

 Then given an input size and a running time, you should be
able solve for c.

Practice Problems
1) Algorithm A runs in O(n2) time, and for an input

size of 4, the algorithm runs in 10 ms.

 How long can you expect it to take to run on an
input size of 16?

 Given O(f(n)), we know c*f(n) = time in ms

 So we’re given f(n) = n2 and n = 4, and time = 10ms

 So we can solve for c: c*42 = 10ms, c = 10/16

 Now in the second part, n = 16 and we want to find the
time, now we can plug in c:

 (10/16)*162 = 160 ms

Practice Problems

1) Algorithm A runs in O(log2n) time, and for an
input size of 16, the algorithm runs in 28 ms.

 How long can you expect it to take to run on an
input size of 64?

 C*log2(16) = 28ms 4c = 28ms c = 7

 If n = 64, let’s solve for time:

 7*log264 = time ms

 7*6 = 42 ms

Reasonable vs Unreasonable
Algorithms

 One thing we can use order notation for is

 to decide whether or not an algorithm can be
implemented in practice and run in a reasonable
amount of time.

 In a very general sense,

algorithms that run in polynomial time with respect to the
input, are considered to be REASONABLE.

– So this would include any algorithm that runs in O(nk) time, where
k is some constant.

– In most everyday problems, k is never more than 3 or so

– While O(n3) algorithms are quite slow for larger input sizes, they
will still finish in a reasonable amount of time.

Reasonable vs Unreasonable
Algorithms

 However, there are mathematical functions
that are “larger” than polynomials.

 In particular, exponential functions grow much
more quickly than polynomials.

Exponential, meaning it runs in O(cn) time, where c is
some constant.

– It is considered to be an UNREASONABLE algorithm.

– Running such an algorithm would take too much time for any
substantial value of n.

– For example, consider computing 2100.

Reasonable vs Unreasonable
Algorithms

 Often times, exhaustive search algorithms are
UNREASONABLE.
 In a chess game, one way for a computer player to

choose a move is to map out all possible moves by the
computer and the opponent, several moves into the
future.
Then by judging which would lead to a better board position,

the computer would choose the best move.
– Unfortunately, there are too many board positions to consider

them all
– So such an algorithm would be unreasonable.
– (Most computer chess programs only search a few possible

moves, not all of them. And only consider a few of the
opponents responses.)

