INTRO TO ALGORITHM ANALYSIS

COP 3502

Analysis of Code Segments

- Each of the following examples illustrates how to determine the Big-O run time of a segment of code or a function.
- Each of these functions will be analyzed for their runtime in terms of the variable n.
- Keep in mind that run-time may be dependent on more than one input variable.

Analysis of Code Segments: EX 1

int funcl(int n) \{

x $=0$;
 for (i = 1; i <= n; i++) \{ for (j = 1; j <=n; j++) \{ 1 operation
 return x;

This is a straight-forward function to analyze

- We only care about the simple ops in terms of n, remember any constant \# of simple steps counts as 1.
- Let's make a chart for the different values of (i, j), since for each change in i, j we do a constant amount of work.

\boldsymbol{i}	\boldsymbol{j}
1	1
1	2
1	3
\ldots	\ldots
1	n
2	1
2	2
2	3
\ldots	\ldots
2	n
\ldots	\ldots
n	1
\ldots	\ldots
n	n

Analysis of Code Segments: EX 1

int func1 (int n) \{

$$
\begin{aligned}
& \mathbf{x}=0 ; \\
& \text { for }(i=1 ; i<=n ; i++)\{
\end{aligned}
$$

$$
\text { for }(j=1 ; j<=n ; j++) \text { \{ }
$$

$$
x++; \quad 1 \text { operation }
$$

\}
return \mathbf{x};
\}

- So for each value of \boldsymbol{i}, we do \boldsymbol{n} steps.
$n+n+n+\ldots+n$
$=n * n$
$=O\left(n^{2}\right)$

i	j
1	1
1	2
1	3
\ldots	\ldots
1	n
2	1
2	2
2	3
\ldots	\ldots
2	n
\ldots	\ldots
n	1
\ldots	\ldots
n	n

Analysis of Code Segments: EX2

int func2(int n) \{

x = 0;
for (i = 1; i <= n; i++)
1 operation
for (i = 1; i<=n; i++)
x++;
1 operation
return x;
\}
In this situation, the first for loop runs n times, so we do n steps.
After it finishes, we run the second for loop which also runs n times.

Our total runtime is on the order of $\boldsymbol{n}+\boldsymbol{n}=2 \boldsymbol{n}$.

- In order notation, we drop all leading constants, so our runtime is
- O(n)

Analysis of Code Segments: EX3

```
int func3(int n) {
    while (n>0) {
        printf("%d", n%2); 1 operation
        n = n/2;
    1 operation
    }
}
```

- Since n is changing, let origN be the original value of the variable \boldsymbol{n} in the function.
- The $\mathbf{1}^{\text {st }}$ time through the loop, n gets set to origN/2
- The $2^{\text {nd }}$ time through the loop, n gets set to origN/4
- The $\mathbf{3}^{\text {rd }}$ time through the loop, n gets set to origN/8
- In general, after k loops, n get set to origN/2k
- So the algorithm ends when origN/2k =1 approximate

Analysis of Code Segments: EX3

int func3(int n) \{
 while ($\mathrm{n}>0$) $\{$
 printf("\%d", n\%2); 1 operation
 n $=\mathbf{n} / 2$;
 1 operation
 \}

- So the algorithm ends when origN/2 $\mathbf{2}^{\mathrm{k}}=\mathbf{1}$ approximately
- (where \boldsymbol{k} is the number of steps)
- \rightarrow origN $=2^{k}$
- take log of both sides
- $\rightarrow \log _{2}($ origN $)=\log _{2}\left(2^{k}\right)$
- $\rightarrow \log _{2}($ origN $)=k$
- So the runtime of this function is
" $0(\lg n)$

Note:

When we use logs in run-time, we omit the base, since for all log functions with different bases greater than 1, they are all equivalent with respect to order notation

Logarithms

- Sidenote:
- We never use bases for logarithms in O-notation
- This is because changing bases of logs just involves multiplying by a suitable constant
$>$ and we don't care about constant of proportionality for Onotation!
- For example:
- If we have $\log _{10} n$ and we want it in terms of $\log _{2} n$
\Rightarrow We know $\log _{10} n=\log _{2} n / \log _{2} 10$
$>$ Where $1 / \log _{2} 10=0.3010$
$>$ Then we get $\log _{10} n=0.3010 \times \log _{2} n$

Analysis of Code Segments: EX 4

int func4 (int** array, int n) \{

int $i=0$, $j=0$;
while (i < n) \{
while (j < n \&\& array[i][j] == 1)
j++;
i++;
\}
return j;
\}

- In this function, i and j can increase, but they can never decrease.
- Furthermore, the code will stop when \boldsymbol{i} gets to n.
- Thus, the statement $\boldsymbol{i}++$ can never run more than \boldsymbol{n} times and the statement $j++$ can never run more than \boldsymbol{n} times.
- Thus, the most number of times these two critical statements can run is $\mathbf{2 n}$.
- It follows that the runtime of this segment of code is
- O(n)

Analysis of Code Segments:

int $i=0, j=0$;
while (i < n) \{
$j=0$;
while (j < n \&\& array[i][j] == 1)
j++;
i++;
\}
return j;

- All we did in this example is reset \mathbf{j} to 0 at the beginning of i loop iteration.
- Now, \mathbf{j} can range from 0 to n for EACH value of \mathbf{i}
- (similar to example \#1),
- so the run-time is
$-\underline{O}\left(n^{2}\right)$

Analysis of Code Segments: EX 6

int func6(int array[], int n) \{ int i,j, sum=0;
for (i=0; i<n; i++) \{ for (j=i+1; j<n; j++) if (array[i] > array[j]) sum++;
\}
return sum;
\}

The amount of times the inner loop runs is dependent on \boldsymbol{i}

- The table shows how \boldsymbol{j} changes $\mathbf{w} /$ respect to \boldsymbol{i}
- The \# of times the inner loop runs is the sum:
- $\mathbf{0}+\mathbf{1}+\mathbf{2 + 3 + \ldots + (n - 1)}$
- $=(n-1) n / 2=0.5 n^{2}-0.5 n$
- So the run time is?
$O\left(n^{2}\right)$
- Common Summation:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

- What we have:
$\sum_{i=1}^{n-1} i=\frac{(n-1) n}{2}$

Analysis of Code Segments: EX 7

int f7 (int a[], int sizea, int b[], int sizeb) \{ int i, j;
for (i=0; i<sizea; i++)
for (j=0; j<sizeb; j++)
if (a[i] == b[j]) return 1;
return 0;
\}

- This runtime is in terms of sizea and sizeb.
- Clearly, similar to Example \#1, we simply multiply the \# of terms in the $1^{\text {st }}$ loop by the number of terms in the $2^{\text {nd }}$ loop. Here, this is simply sizea*sizeb.
- So the runtime is?

O(sizea*sizeb)

Analysis of Code Segments: EX 7

int f7 (int a[], int sizea, int b[], int sizeb) \{ int i, j;
for (i=0; i<sizea; i++)
for (j=0; j<sizeb; j++)
if (a[i] == b[j]) return 1;
return 0;
\}

- This runtime is in terms of sizea and sizeb.
- Clearly, similar to Example \#1, we simply multiply the \# of terms in the $1^{\text {st }}$ loop by the number of terms in the $2^{\text {nd }}$ loop. Here, this is simply sizea*sizeb.
- So the runtime is?

O(sizea*sizeb)

Analysis of Code Segments:

int f8(int a[], int sizea, int b[], int sizeb) \{ int i, j;
for (i=0; i<sizea; i++) \{ if (binSearch(b, sizeb, a[i])) return 1;
\}
return 0;

- As previously discussed, a single binary search runs in $\mathbf{O}(\lg n)$
- where \boldsymbol{n} represents the number of items in the original list you're searching.
- In this particular case, the runtime is? O(sizea* $\lg ($ sizeb))
- since we run our binary search on sizeb items exactly sizea times.

Analysis of Code Segments:

int f8(int a[], int sizea, int b[], int sizeb) \{ int i, j;
for (i=0; i<sizea; i++) \{ if (binSearch(b, sizeb, a[i])) return 1;
\}
return 0;

In this particular case, the runtime is? O(sizea* $\lg ($ sizeb $))$

- since we run our binary search on sizeb items exactly sizea times.
- Notice:
- that the runtime for this algorithm changes greatly if we switch the order of the arrays. Consider the 2 following examples:

1) sizea $=1000000$, sizeb $=10$
2) sizea $=10$,
sizeb $=1000000$
sizea*Ig(sizeb) ~ 3320000 sizea*Ig(sizeb) ~ 300
