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Recursion – Towers of Hanoi 

 The Towers of Hanoi 
 Is a mathematical puzzle that has a classic recursive 

solution that we are going to examine. 
 The puzzle was invented by the French mathematician 

Edouard Lucas, based upon a legend: 
 In an Indian temple there contains three posts surrounded by 64 

golden disks. 
The monks have been moving the disks according to the puzzle 

rules since the beginning of time. 
And according to the legend, when the last move of the puzzle is 

completed, the world will end. 
 



Recursion – Towers of Hanoi 

 The Towers of Hanoi 

 The goal is to move all disks from Tower#1 to 
Tower#3. 

 The rules are: 

You can only move ONE disk at a time 

And you can NEVER put a bigger disk on top of a 
smaller disk. 

 



Recursion – Towers of Hanoi 

 The Towers of Hanoi 
 Coming up with a Recursive Solution: 
Clearly an tower with more than 1 disk must be moved 

in pieces. 

We know that the bottom disk needs to moved to the 
destination tower. 

– In order to do that we need to move all disks above the 
bottom disk to the intermediate tower. 

– This leads to our recursive solution! 

 



Recursion – Towers of Hanoi 

 The Towers of Hanoi 
 Solution: 

Regardless of the number of disks, we know we have to do 
the following steps: 

– The bottom disk needs to be moved to the destination tower 
1) So step 1 must be to move all disks above the bottom disk to 

the intermediate tower. 
2) In step 2, the bottom disk can now be moved to the destination 

tower. 
3) In step 3, the disks that were initially above the bottom disk 

must now be put back on top of the destination tower. 

 



Recursion – Towers of Hanoi 

 The Towers of Hanoi 
 Let’s look at the problem with only 3 disks. 

 Solution: 
Step 1: 

– Move top 2 disks to temp  

» we would have to solve this recursively, since we can only 
move 2 disks at a time. 

» We’re going to assume that we know how to do the 2 disk 
problem (since this is solved recursively), and continue to the 
next step. 

 

Start        Temp          Finish Start        Temp          Finish 



Recursion – Towers of Hanoi 

 The Towers of Hanoi 
 Let’s look at the problem with only 3 disks. 

 Solution: 
Step 2: 

– Move the last single disk from start to finish 

– Moving a single disk does not use recursion, and does not use 
the temp tower. 

– (In our program, a single disk move is represented with a print 
statement.) 

 

Start        Temp          Finish Start        Temp          Finish 



Recursion – Towers of Hanoi 

 The Towers of Hanoi 

 Let’s look at the problem with only 3 disks. 

 Solution: 

Step 3: 
– Last step – Move the 2 disks from Temp to Finish 

» This would be done recursively. 

 

Start        Temp          Finish Start        Temp          Finish 
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Recursion – Towers of Hanoi 

 Number of Steps: 

 3 disks required 7 steps 

 4 disks would requre 15 steps 

 We get n disks would require 2n - 1 steps 

HUGE number 



Start        Temp          Finish 
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void doHanoi(int n, char start, char finish, char temp) { 

 if (n==1) { 

  printf(“Move Disk from %c to %c\n”, start, 

finish); 

 } 

 else { 

  doHanoi(n-1, start, temp, finish); 

  printf(“Move Disk from %c to %c\n, start finish); 

  doHanoi(n-1, temp, finish, start); 

 } 

} 
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Rec call to 
get here: 

Rec call to 
get here: 

Single move, 
just print. 



// Function Prototype 

void doHanoi(int n, char start, char finish, char temp); 

 

void main() { 

 int disk; 

 int moves; 

 printf(“Enter the # of disks you want to play with:”); 

 scanf(%d”, &disk); 

 // Print out the # of moves required 

 moves = pow(2, disk)-1; 

 printf(“\nThe # of moves required is = %d \n”, moves); 

 // Show the moves using doHanoi 

 doHanoi(disk, „A‟, „C‟, „B‟); 

} 



Permutations 

 The permutation problem is as follows: 
 Given a list of items, list all the possible orderings of 

those items. 

 

 For example, here are all the permutations of CAT: 
CAT 

CTA 

ACT 

ATC 

TAC 

TCA 



Permutations  

 There are several different permutation 
algorithms,  

 but since we’re focusing on recursion in this 
course, a recursive algorithm will be presented. 

 (Feel free to come up with or research an iterative 
algorithm on your own) 



Recursive Permutation Algorithm 

 The idea is as follows: 
 In order to list all the permutations of CAT, we can 

split our work into three groups of permutations: 
1) Permutations that start with C. 
2) Permutations that start with A. 
3) Permutations that start with T. 

 
 The recursion comes in here: 
 When we list all permutations that start with C, they are 

nothing but strings formed by attaching C to the front of 
ALL permutations of “AT”. 

 This is nothing but another permutation problem!!! 



Recursive Permutation Algorith 

 Number of recursive calls 

 Often when recursion is taught, a rule of thumb is: 

“recursive functions don’t have loops” 

 Unfortunately, this rule of thumb is not always 
true! 

An exception to this rule is the permutation algorithm. 



Recursive Permutation Algorith 

 Number of recursive calls 

 The problem is the number of recursive calls is 
variable. 

 In the CAT example 

3 recursive calls were needed 

 BUT, what if we were permuting the letters in the 
word, “COMPUTER”? 

Then 8 recursive calls (1 for each possible starting 
letter) would be needed. 



Recursive Permutation Algorith 

 Number of recursive calls 
 In other words… 

 We need a loop in the algorithm 
for (each possible starting letter) 

– list all permutations that start with that letter 

 

 What is the terminating condition? 
Permuting either 0 or 1 element. 

– In these cases there’s nothing to permute 

 

In our code, we will use 0 as our terminating condition. 



Recursive Permutation Algorithm 

 The Permutation algorithm: 

 As we have seen in previous examples 

some recursive functions take in an extra parameter 
compared to their iterative implementation 

This is usually used to keep track of the number of 
iterations left until the base case. 

 This is the case for our permutation algorithm 

Shown in the following function… 



Recursive Permutation Algorithm 

 So k refers to the first k characters that are 
fixed in their original positions. 

// Pre-condition:   str is a valid C String, and k        

//   is non-negative and <= the              

//         length of str. 

// Post-conditions: All of the permutations of str with 

//   the first k characters fixed in   

//   their original positions are   

//   printed.  Namely, if n is the lenth 

//   of str, then (n-k)! permutations are 

//   printed. 

void RecursivePermute(char str[], int k); 



Recursive Permutation Algorithm 

 So we terminate when k is equal to the length of 
the string, str 
 This means: 

If k is equal to the length of the actual string, and all k 
values are fixed, there’s nothing left to permute 

So we just print out that permutation 
 

// Pre-condition:   str is a valid C String, and k        

//   is non-negative and <= the              

//         length of str. 

// Post-conditions: All of the permutations of str with 

//   the first k characters fixed in   

//   their original positions are   

//   printed.  Namely, if n is the lenth 

//   of str, then (n-k)! permutations are 

//   printed. 

void RecursivePermute(char str[], int k); 



Recursive Permutation Algorithm 

 If we do NOT terminate: 

 We want a loop that tries each character at index 
k. 

 

// Pre-condition:   str is a valid C String, and k        

//   is non-negative and <= the              

//         length of str. 

// Post-conditions: All of the permutations of str with 

//   the first k characters fixed in   

//   their original positions are   

//   printed.  Namely, if n is the lenth 

//   of str, then (n-k)! permutations are 

//   printed. 

void RecursivePermute(char str[], int k); 



Recursive Permutation Algorithm 
 The recursive algorithm: 

 

 

 

 

void RecursivePermute(char str[], int k) { 

 int j; 

  

 // Base-case:  All fixed, so Print! 

 if (k == strlen(Str)) 

  pringf(“%s\n”, str); 

 else { 

  // Try each letter in spot j 

  for (j=k; j<strlen(Str); j++) { 

   // Place next letter in spot k. 

   ExchangeCharacters(str, k, j); 

 

   // Pring all with spot k fixed. 

   RecursivePermute(str, k+1); 

 

   // Put the old char back. 

   ExchangeCharacters(str, j, k); 

  } 

 } 

} 



Recursive Permutation Algorithm 

 The main loop within the recursive algorithm: 

 

 

 

 How do we get the different characters in the 
first position?  

 (The ‘C’, ‘A’, ‘T’ , in our CAT example) 

 

for (j=k; j<strlen(Str); j++) { 

 ExchangeCharacters(str, k, j); 

 RecursivePermute(str, k+1); 

 ExchangeCharacters(str, j, k); 

} 



Recursive Permutation Algorithm 

 The main loop within the recursive algorithm: 

 

 

 

 The ExchangeCharacters function: 

 Takes in str, and swaps 2 characters within that 
string (at index k and index j) 

 

for (j=k; j<strlen(Str); j++) { 

 ExchangeCharacters(str, k, j); 

 RecursivePermute(str, k+1); 

 ExchangeCharacters(str, j, k); 

} 



Recursive Permutation Algorithm 

 This function will swap the characters for us, 

 Letting each character have a turn at being the 1st 
character in the sub-string 

 

 

 

 

// Pre-condition: str is a valid C String and i,j are 

       valid indices to that string. 

// Post-condition:  The characters at i and j, will 

   be swapped in str. 

void ExchangeCharacters(char str[], int i, int j) { 

 char temp = str[i]; 

 str[i] = str[j]; 

 str[j] = temp; 

} 



Recursive Permutation Algorithm 

 The main loop within the recursive algorithm: 

 

 

 

 So after we swap positions, we swap back so 
we can continue looping through the rest of 
the possible characters at position k. 

 

for (j=k; j<strlen(Str); j++) { 

 ExchangeCharacters(str, k, j); 

 RecursivePermute(str, k+1); 

 ExchangeCharacters(str, j, k); 

} 



Recursive Permutation Algorithm 

 Recursive Permutation code in detail: 
 2 parameters to the function 
1) The string we want to permute (for example “CAT” 
2) And the integer k 
 Represents the first k characters that are FIXED at their 

spots. 
 Nothing left to permute so we print. 

 
void RecursivePermute(char str[], int k) { 

 int j; 

 

 // Base-case:  All positions are fixed, 

 //    Nothing to permute. 

 if (k == strlen(str)) 

  printf(“%s\n”, str); 



Recursive Permutation Algorithm 

 Recursive Permutation code in detail: 
 Let’s use “CAT” as our example 

 Originally we call:  RecursivePermute(“CAT”, 0) 

 Since k == 0, ZERO characters are fixed, so we don’t 
print yet. 
We move to the else case 

void RecursivePermute(char str[], int k) { 

 int j; 

 

 // Base-case:  All positions are fixed, 

 //    Nothing to permute. 

 if (k == strlen(str)) 

  printf(“%s\n”, str); 

void RecursivePermute(char str[], int k) { 

 // PREVIOUS CODE 

 

 else { 

  // Try each letter in spot j 

  for (j=k; j<strlen(Str); j++) { 

   // … 

  } 

 } 



Recursive Permutation Algorithm 

 Recursive Permutation code in detail: 

 ALL other cases (NON-base cases): 

Call this for loop 

Iterates the number of times EQUAL to the number of 
possible characters that can go into index k. 

// Try each letter in spot j 

 for (j=k; j<strlen(Str); j++) { 

  // Place next letter in spot k. 

  ExchangeCharacters(str, k, j); 

  // Print all perms with spot k fixed 

  RecursivePermuite(str, k+1); 

  // Put the old char back 

  ExchangeCharacters(str, j, k); 

 } 



Recursive Permutation Algorithm 

 Recursive Permutation code in detail: 
 ALL other cases (NON-base cases): 
So it would try: 

– Permutations that start with C 

– Permutations that start with A 

– Permutations that start with T 

 // Try each letter in spot j 
 for (j=k; j<strlen(Str); j++) { 

  // Place next letter in spot k. 

  ExchangeCharacters(str, k, j); 

  // Print all perms with spot k fixed 

  RecursivePermuite(str, k+1); 

  // Put the old char back 

  ExchangeCharacters(str, j, k); 

 } 



Rec (CAT, 0) 

Rec (CAT, 1) 

Rec (CAT, 2) 

Rec (CAT, 3) 

Rec (ACT, 0) 

(“CAT”) 

Ex (CAT, 1,1) Ex (CAT, 1,2) 

Rec (CTA, 2) 

Ex (CAT, 2,2) 

Ex (CAT, 0,0) 

Ex (CTA, 2,2) 

Rec (CTA, 3) 

(“CTA”) 

Ex (CAT, 0,1) Ex (CAT, 0,2) 

Rec (ACT, 2) 

Rec (ACT, 3) 

(“ACT”) 

Ex (ACT, 1,1) Ex (ACT, 1,2) 

Rec (ATC, 2) 

Ex (ACT, 2,2) Ex (ATC, 2,2) 

Rec (ATC, 3) 

(“ATC”) 

Rec (TAC, 0) 

Rec (TAC, 2) 

Rec (TAC, 3) 

(“TAC”) 

Ex (TAC, 1,1) Ex (TAC, 1,2) 

Rec (TCA, 2) 

Ex (TAC, 2,2) Ex (TCA, 2,2) 

Rec (TCA, 3) 

(“TCA”) 

 for (j=k; j<strlen(Str); j++) { 

  ExchangeCharacters(str, k, j); 

  RecursivePermute(str, k+1); 

  ExchangeCharacters(str, j, k); 

 } 


