MORE RECURSION: FLOOD FILL & EXPONENTIATION

COP 3502
A Flood Fill is a name given to the following basic idea:

- In a space (typically 2-D, or 3-D) with an initial starting square, fill in all the adjacent squares with some value or item.
 - Until some boundary is hit.
 - For example, the paint bucket in MS Paint is an example of flood fill.
Recursive Flood Fill Algorithm

- Imagine you want to fill in a “lake” with the ~ character.
 - We’d like to write a function that takes in one spot in the lake (the coordinates to that spot in the grid)
 - In the example, you can see we don’t want to just replace all “_” with “~”, because we just want to fill the contiguous area.

![Diagram of lake before and after fill](image-url)
Recursive Flood Fill Algorithm

- Depending on how the floodfill should occur
 - Do we just fill in each square above, below, left, and right
 - OR do we ALSO fill in the diagonals
- The basic idea behind a recursive function, is shown in pseudocode:

```c
Void FloodFill(char grid[][SIZE], int x, int y) {
    grid[x][y] = FILL_CHARACTER;

    for (each adjacent location i,j to x,y) {
        if (i,j is inbounds and not filled)
            FloodFill(grid, i, j);
    }
}
```
Recursive Flood Fill Algorithm

- When we actually write the code,
 - We may either choose a loop to go through the adjacent locations, or simply spell them out.
 - If there are 8 locations (using the diagonal) a loop is better.
 - If there are 4 or fewer (North, South, East, West)
 - It might make more sense to write each recursive call separately.

```c
Void FloodFill(char grid[][SIZE], int x, int y) {
    grid[x][y] = FILL_CHARACTER;

    for (each adjacent location i,j to x,y) {
        if (i,j is inbounds and not filled)
            FloodFill(grid, i, j);
    }
}
```
General Structure of Recursive Functions

- Here are 2 general constructs of recursive functions

```java
if (termination condition) {
    DO FINAL ACTION
} else {
    Take 1 step closer to terminating condition
    Call function RECURSIVELY on smaller sub-problem
}
```

```java
if (!termination condition) {
    Take 1 step closer to terminating condition
    Call function RECURSIVELY on smaller sub-problem
}
```

Typically, functions that return values use this construct.

While void recursive function use the this construct.

Note: These are not the ONLY layouts of recursive programs, just common ones.
Recursive Flood Fill Algorithm

- Implementation shown in class...
FAST EXPONENTIATION

COP 3502
On the first lecture on recursion we discussed the Power function:

- But this is slow for very large exponents.

```c
// Pre-conditions: exponent is >= to 0
// Post-conditions: returns base^{exponent}
int Power(int base, int exponent) {
    if (exponent == 0)
        return 1;
    else
        return (base*Power(base, exponent - 1));
}
```
An example of an application that uses very large exponents is data encryption.

One method for encryption of data (such as credit card numbers) involves modular exponentiation, with very large exponents.

- Using the original recursive Power, it would take thousands of years just to do a single calculation.
- Luckily, with one very simple observation, the algorithm can take a second or two with these large numbers.
The key idea is that IF the exponent is even, we can exploit the following formula:

\[b^e = (b^{e/2}) \times (b^{e/2}) \]

For example, \(2^8 = 2^4 \times 2^4\)

- Now, if we know \(2^4\) we can calculate \(2^8\) with a single multiplication.
- \(2^4 = 2^2 \times 2^2\)
- And \(2^2 = 2 \times 2\)

Now we can return:

- \(2^2 = 4, \ 4 \times 4 = 16, \ 16 \times 16 = 256\)

This required only 3 multiplications, instead of 7.
Fast Exponentiation

- The key idea is that IF the exponent is even, we can exploit the following formula:
 - \(b^e = (b^{e/2}) \times (b^{e/2}) \)
 - So, in order to find \(b^n \) we find \(b^{n/2} \)
 - Half of the original amount
 - And then to find \(b^{n/2} \), we find \(b^{n/4} \)
 - Again, Half of \(b^{n/2} \)

- So if we are reducing the number of multiplications we have to make in half each time, what might the run time be?
 - \(\log n \) multiplications
 - Which is much better than the original \(n \) multiplications.
- But this only works if \(n \) is even...
Fast Exponentiation

- The key idea is that IF the exponent is even, we can exploit the following formula:
 - \(b^n = (b^{n/2}) \times (b^{n/2}) \)
 - Since \(n \) is an integer, we have to rely on integer division which rounds down to the closest integer.
- What if \(n \) is odd?
 - \(b^n = b^{n/2} \times b^{n/2} \times b \)
 - So \(2^9 = 2^4 \times 2^4 \times 2 \)
- Which gives us the following formula to base our recursive algorithm on:
 - \(b^n = \begin{cases} b^{n/2} \times b^{n/2} & \text{if } n \text{ is even} \\ b^{n/2} \times b^{n/2} \times b & \text{if } n \text{ is odd} \end{cases} \)
Fast Exponentiation

- Here is the code, notice it uses the same base case as the previous Power function:

```c
int PowerNew(int base, int exp) {
    if (exp == 0)
        return 1;
    else if (exp == 1)
        return base;
    else if (exp%2 == 0)
        return PowerNew(base*base, exp/2);
    else
        return base*PowerNew(base, exp-1);
}
```
Fast Exponentiation

- Here is the code for Fast Exponentiation using Mod:

```java
int modPow(int base, int exp, int n) {
    base = base%n;

    if (exp == 0)
        return 1;
    else if (exp == 1)
        return base;
    else if (exp%2 == 0)
        return modPow(base*base%n, exp/2, n);
    else
        return base*modPow(base, exp-1, n)%n;
}
```

- Even using mod, the stack is overflowed quickly, so this solution needs to be translated to an iterative solution.
Practice Problem

- Print a String in reverse order:
- For example, if we want to print “HELLO” backwards,
 - we first print: “O”, then we print “HELL” backwards... this is where the recursion comes in!

- See if you can come up with a solution for this
Practice Problem

- Write a recursive function that:
 - Takes in 2 non-negative integers
 - Returns the product
 - Does NOT use multiplication to get the answer

- So if the parameters are 6 and 4
 - We get 24
 - Not using multiplication, we would have to do 6+6+6+6