## MORE RECURSION: FLODD FILL \& EXPONENTIATION COP 3502

## Recursive Flood Fill Algorithm

- A Flood Fill is a name given to the following basic idea:
- In a space (typically 2-D, or 3-D) with an initial starting square, fill in all the adjacent squares with some value or item.

Example of a Recursive
Flood Fill with 4 directions
$>$ Until some boundary is hit.
>For example, the paint bucket in MS Paint is an example of flood fill.

## Recursive Flood Fill Algorithm

" Imagine you want to fill in a "lake" with the ~ character.

- We'd like to write a function that takes in one spot in the lake (the coordinates to that spot in the grid)
- In the example, you can see we don't want to just replace all "_" with "~", because we just want to fill the contiguous area.



## Recursive Flood Fill Algorithm

- Depending on how the floodfill should occur
- Do we just fill in each square above, below, left, and right
- OR do we ALSO fill in the diagonals
- The basic idea behind a recursive function, is shown in pseudocode:

```
Void FloodFill(char grid[][SIZE], int x, int y) {
    grid[x][y] = FILI_CHARACTER;
    for (each adjacent location i,j to x,y) {
        if (i,j is inbounds and not filled)
                        FloodFill(grid, i, j);
        }
}
```


## Recursive Flood Fill Algorithm

- When we actually write the code,
- We may either choose a loop to go through the adjacent locations, or simply spell them out.
- If there are 8 locations (using the diagonal) a loop is better.
- If there are 4 or fewer (North, South, East, West)
$>$ It might make more sense to write each recursive call separately.

```
Void FloodFill(char grid[][SIZE], int x, int y) {
    grid[x][y] = FILL_CHARACTER;
    for (each adjacent location i,j to x,y) {
        if (i,j is inbounds and not filled)
        FloodFill(grid, i, j);
    }
}
```


## General Structure of Recursive Functions

- Here are 2 general constructs of recursive functions

```
if (termination condition) {
    DO FINAL ACTION
}
else {
    Take 1 step closer to terminating condition
Call function RECURSIVELY on smaller sub-problem
```

if (!termination condition) {
Take 1 step closer to
terminating condition

```

Call function RECURSIVELY on smaller sub-problem

While void recursive function use the this construct.

Typically, functions that return values use this construct.

Note: These are not the ONLY layouts of recursive programs, just common ones.

\section*{Recursive Flood Fill Algorithm}
- Implementation shown in class...

\section*{SinUCF}

\section*{FAST EXPONENTIATION}

COP 3502

\section*{Fast Exponentiation}
- On the first lecture on recursion we discussed the Power function:
- But this is slow for very large exponents.
```

// Pre-conditions: exponent is >= to 0
// Post-conditions: returns baseexponent
int Power(int base, int exponent) {
if (exponent == 0)
return 1;
else
return (base*Power (base, exponent - 1);
}

```

\section*{Fast Exponentiation}
- An example of an application that uses very large exponents is data encryption
- One method for encryption of data (such as credit card numbers) involves modular exponentiation, with very large exponents.
\(>\) Using the original recursive Power, it would take thousands of years just to do a single calculation.
>Luckily, with one very simple observation, the algorithm can take a second or two with these large numbers.

\section*{Fast Exponentiation}

The key idea is that IF the exponent is even, we can exploit the following formula:
- \(b^{e}=\left(b^{e / 2}\right) \mathbf{x}\left(b^{e / 2}\right)\)
- For example, \(2^{8}=2^{4 *} 2^{4}\)
\(>\) Now, if we know \(2^{4}\) we can calculate \(2^{8}\) with a single multiplication.
\(>2^{4}=2^{2 *} 2^{2}\)
\(\Rightarrow\) And \(2^{2}=2^{*} 2\)
- Now we can return:
\(>2 * 2=4,4 * 4=16,16 * 16=256\)
\(>\) This required only 3 multiplications, instead of 7

\section*{Fast Exponentiation}

The key idea is that IF the exponent is even, we can exploit the following formula:
- \(\mathbf{b}^{\mathrm{e}}=\left(\mathbf{b}^{\mathrm{e} / 2}\right) \mathbf{x}\left(\mathbf{b}^{\mathrm{e}} / \mathbf{2}\right)\)
- So, In order to find, \(b^{n}\) we find \(b^{n / 2}\)
\(>\) Half of the original amount
- And then to find \(b^{n / 2}\), we find \(b^{n / 4}\)
\(>\) Again, Half of \(b^{n / 2}\)
- So if we are reducing the number of multiplications we have to make in half each time, what might the run time be?
\(>\) Log n multiplications
\(>\) Which is much better than the original \(n\) multiplications.
- But this only works if \(n\) is even...

\section*{Fast Exponentiation}

The key idea is that IF the exponent is even, we can exploit the following formula:
- \(\mathbf{b}^{\mathrm{e}}=\left(\mathbf{b}^{\mathrm{e} / 2}\right) \mathbf{x}\left(\mathbf{b}^{\mathrm{e} / 2}\right)\)
- Since n is an integer, we have to rely on integer division which rounds down to the closest integer.
- What if n is odd?
\[
\begin{aligned}
& >b^{n}=b^{n / 2 *} b^{n / 2 *} b \\
& >\text { So } \mathbf{2}^{9}=\mathbf{2}^{4 *} \mathbf{2}^{4 *} \mathbf{2}
\end{aligned}
\]
- Which gives us the following formula to base our recursive algorithm on:
\[
>b^{n}= \begin{cases}b^{n / 2 *} b^{n / 2} & \text { if } n \text { is even } \\ b^{n / 2 *} b^{n / 2 *} b & \text { if } n \text { is odd }\end{cases}
\]

\section*{Fast Exponentiation}
- Here is the code, notice it uses the same base case as the previous Power function:
```

int PowerNew (int base, int exp) {
if (exp == 0)
return 1;
else if (exp == 1)
return base;
else if (exp%2 == 0)
return PowerNew(base*base, exp/2);
else
return base*PowerNew (base, exp-1) ;

```
\}

\section*{Fast Exponentiation}
- Here is the code for Fast Exponentiation using Mod:
```

int modPow(int base, int exp, int n) {
base = base%n;
if (exp == 0)
return 1;
else if (exp == 1)
return base;
else if (exp%2 == 0)
return modPow (base*base%n, exp/2, n);
else
return base*modePow (base, exp-1, n)%n;
}

```
- Even using mod, the stack is overflowed quickly, so this solution needs to be translated to an iterative solutian.

\section*{Practice Problem}
- Print a String in reverse order:
- For example, if we want to print "HELLO" backwards,
" we first print: " \(O\) ", then we print "HELL" backwards... this is where the recursion comes in!
- See if you can come up with a solution for this

\section*{Practice Problem}
- Write a recursive function that:
- Takes in 2 non-negative integers
- Returns the product
\(>\) Does NOT use multiplication to get the answer
- So if the parameters are 6 and 4
\(>\) We get 24
\(>\) Not using multiplication, we would have to do \(6+6+6+6\)```

