&
SUCF
MORE RECURSION:

FLOOD FILL &
EXPONENTIATION

COP 3502

Recursive Flood Fill Algorithm

A Flood Fill is a name given to

the following basic idea: '
In a space (typically 2-D, or 3-D)
with an initial starting square, fill .
in all the adjacent squares with Example of a Recursive

some value or item Flood Fill with 4 directions

Until some boundary is hit.

For example, the paint bucket in MS
Paint is an example of flood fill.

http://en.wikipedia.org/wiki/File:Recursive_Flood_Fill_4_(aka).gif

Recursive Flood Fill Algorithm

Imagine you want to fill in a “lake” with the ~
character.

We'd like to write a function that takes in one spot in
the lake (the coordinates to that spot in the grid)

In the example, you can see we don’t want to just
replace all “_” with “~”, because we just want to fill the
contiguous area.

¥ ¥ ¥EE TE XX T EKEEXE KK
L1 | L1

Recursive Flood Fill Algorithm

Depending on how the floodfill should occur

Do we just fill in each square above, below, left,
and right

OR do we ALSO fill in the diagonals

The basic idea behind a recursive function, is
shown in pseudocode:

Void FloodFill (char grid[] [SIZE], int x, int y) {
grid[x] [y] = FILL CHARACTER;

for (each adjacent location 1i,j to x,y) {

if (i,J is inbounds and not filled)
FloodFill (grid, i, j);

Recursive Flood Fill Algorithm

When we actually write the code,

We may either choose a loop to go through the
adjacent locations, or simply spell them out.

If there are 8 locations (using the diagonal) a loop is
better.

If there are 4 or fewer (North, South, East, West)

It might make more sense to write each recursive call
separately.

Void FloodFill (char grid[] [SIZE], int x, int y) {
grid[x] [y] = FILL CHARACTER;

for (each adjacent location i,j to x,y) {

if (i,J is inbounds and not filled)
FloodFill (grid, i, j);

General Structure of Recursive
Functions

Here are 2 general constructs of recursive
functions

if
DO FINAL ACTION

)

Take 1 step closer to
} terminating condition

else {
Take 1 step closer to

Call function RECURSIVELY

terminating condition on smaller sub-problem

Call function RECURSIVELY

on smaller sub-problem

While void recursive function use the
this construct.

Typically, functions that return values | Note: These are not the ONLY layouts of &
use this construct. recursive programs, just common ones.

Recursive Flood Fill Algorithm

Implementation shown in class...

<
SUCF
FAST EXPONENTIATION

COP 3502

Fast Exponentiation

On the first lecture on recursion we discussed
the Power function:
But this is slow for very large exponents.

// Pre-conditions: exponent is >= to 0
// Post-conditions: returns bases*ponent

int Power (int base, int exponent) {

if (exponent == 0)
return 1;

else
return (base*Power (base, exponent - 1);

Fast Exponentiation

An example of an application that uses very
large exponents is data encryption

One method for encryption of data (such as credit
card numbers) involves modular exponentiation,
with very large exponents.

Using the original recursive Power, it would take
thousands of years just to do a single calculation.

Luckily, with one very simple observation, the
algorithm can take a second or two with these large

numbers.
&

Fast Exponentiation

The key idea is that IF the exponent is even, we can
exploit the following formula:

be = (be/Z)x(be/Z)

For example, 28 = 24*24

Now, if we know 2% we can calculate 28 with a single
multiplication.

24 = 22%92
And 22 =2%*2

Now we can return:
2*%2=4,4*4 =16, 16*16 = 256

This required only 3 multiplications, instead of 7 @

Fast Exponentiation

The key idea is that IF the exponent is even, we can
exploit the following formula:
be = (be/Z)x(be/Z)
So, In order to find, b" we find b"/2
Half of the original amount

And then to find b"/2, we find b"/4
Again, Half of b"/2

So if we are reducing the number of multiplications we have
to make in half each time, what might the run time be?

Log n multiplications
Which is much better than the original n multiplications.

But this only works if n is even... @

Fast Exponentiation

The key idea is that IF the exponent is even, we can
exploit the following formula:
be = (be/Z)x(be/Z)
Since n is an integer, we have to rely on integer division
which rounds down to the closest integer.

What if nis odd?

bh = bnlz*bn/Z*b

Se2)=23*24%2
Which gives us the following formula to base our
recursive algorithm on:

bn = bn/2*pn/2 if n is even
bY/2*b"2%h if n is odd &

Fast Exponentiation

Here is the code, notice it uses the same base
case as the previous Power function:

int PowerNew (int base, int exp) {
if (exp == 0)
return 1;
else if (exp == 1)
return base;

else if (exp%2 == 0)
return PowerNew (base*base, exp/2);

else
return base*PowerNew (base, exp-1);

Fast Exponentiation

Here is the code for Fast Exponentiation using Mod:

int modPow (int base, int exp, int n) {
base = base%n;

if (exp == 0)
return 1;
else if (exp == 1)
return base;
else if (exp%2 == 0)
return modPow (base*base%n, exp/2, n);
else

return base*modePow (base, exp-1, n)%n;

Even using mod, the stack is overflowed quickly, so this
solution needs to be translated to an iterative solutigM.

Practice Problem

Print a String in reverse order:

~or example, if we want to print “HELLO”
nackwards,

we first print: “O”, then we print “HELL”
backwards... this is where the recursion comes in!

See if you can come up with a solution for this

&

Practice Problem

Write a recursive function that:
Takes in 2 non-negative integers

Returns the product
Does NOT use multiplication to get the answer

So if the parameters are 6 and 4
We get 24
Not using multiplication, we would have to do 6+6+6+6

&

