## SUUCF <br> LINEAR VS BINARY SEARCH

## COP 3502

```
// Pre-conditions: exponent is >= to 0
// Post-conditions: returns base exponent
int Power(int base, int exponent) {
```

```
if (exponent == 0)
```

if (exponent == 0)
return 1;
return 1;
else
return (base*Power (base, exponent - 1);
}

```

To convince you that this works, let's look at an example:
- Power(5,2):


\section*{Recursion}
- Why use recursion?
- Some solutions are naturally recursive.
\(>\) In these cases there might be less code for a recursive solution, and it might be easier to read and understand.
- Why NOT user recursion?
- Every problem that can be solved with recursion can be solved iteratively.
- Recursive calls take up memory and CPU time
\(>\) Exponential Complexity - calling the Fib function uses \(2^{n}\) function calls.
- Consider time and space complexity.

\section*{Recursion Example}
- Let's do another example problem - Fibonacci Sequence
- \(1,1,2,3,5,8,13,21\), ...
- Let's create a function int Fib (int n)
- we return the nth Fibonacci number
- \(\operatorname{Fib}(1)=1, \operatorname{Fib}(2)=1, \operatorname{Fib}(3)=2, \operatorname{Fib}(4)=3, \operatorname{Fib}(5)=5\),
- What would our base (or stopping) cases be?

\section*{Fibonacci}
- \(1,1,2,3,5,8,13,21,34,55,89,144, \ldots\)
- Base (stopping) cases:
- Fib(1) = 1
- \(\operatorname{Fib}(2)=1\),
- Then for the rest of the cases: \(\mathrm{Fib}(\mathrm{n})=\) ?
- Fib( \(n\) ) \(=\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)\), for \(n>2\)
- So Fib(9) = ?
- Fib(8) \(+\mathrm{Fib}(7)=21+13\)

\section*{Recursion - Fibonacci}
- See if we can program the Fibonacci example...

\section*{Recursion - Fibonacci}
- Let's say we called Fibo(5), we can visualize the calls to Fibo on the stack as a tree:


\section*{Recursion - Fibonacci}
- Let's say we called Fibo(5), we can visualize the calls to Fibo on the stack as a tree:


\section*{Recursion - Fibonacci}
- Let's say we called Fibo(5), we can visualize the calls to Fibo on the stack as a tree:


\section*{Practice Problem}
- Write a recursive function that:
- Takes in 2 non-negative integers
- Returns the product
\(>\) Does NOT use multiplication to get the answer
```

int Multiply(int first, int second) {
if (( second == 0 ) || ( first = 0))
return 0;
else
return (first + Multiply(first, second - 1));

```

\section*{Linear Search}
- In C Programming, we looked at the problem of finding a specified value in an array.
- The basic strategy was:
\(>\) Look at each value in the array and compare to \(x\)
- If we see that value, return true
- else keep looking
- If we're done looking through the array and still haven't found it, return false.
```

int search(int array[], int len, int value) {
int i;
for (i = 0; i < len; i++) {
if (array[i] == value)
return 1;
}
return 0;
}

```

\section*{Linear Search}
- For an unsorted array, this algorithm is optimal.
- There's no way you can definitively say that a value isn't in the array unless you look at every single spot.
- But we might ask the question, could we find an item in an array faster if it were already sorted?
```

int search(int array[], int len, int value) {
int i;
for (i = 0; i < len; i++) {
if (array[i] == value)
return 1;
}
return 0;
}

```

\section*{Binary Search}
- Consider the game you probably played when you were little:
>I have a secret number in between 1 and 100, make a guess and I'll tell you whether your guess is too high or too low.
\(>\) Then you guess again, and continue guessing until you guess right.
- What would a good strategy for this game be?

\section*{Binary Search}
- If you divide your search space in half each time,
- you won't run the risk of searching \(3 / 4\) of the list each time.
- For instance, if you pick 75 for your number, and you get the response "too high",
- Then your number is anywhere from 1-74...
- So generally the best strategy is:
- Always guess the number that is halfway between the lowest possible value in your search range and the highest possible value in your search range.

\section*{Binary Search}
- How can we adapt this strategy to work for search for a given value in an array?
- Given the array:

- Search for 19
- Where is halfway in between?
- One guess would be (118+2) / \(2=60\)
\(>\) But 60 isn't in the list and the closest value to 60 is 41 almost at the end of the list.
- We want the middle INDEX of the array.
\(>\) In this case: The lowest index is 0 , the highest is 8 , so the middle index is 4 !

\section*{Binary Search}
- Searching for 19:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|} 
& M \\
\hline Index & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Value & 2 & 6 & 19 & 27 & 33 & 37 & 38 & 41 & 118 \\
\hline
\end{tabular}
- Now we ask,
- Is 19 greater than, or less than, the number at index 4?
\(>\) It is Less than, so now we only want to search from index 0 to index 3 .

\section*{Binary Search}
- Searching for 19:

Don't care about

- The middle of 0 and 3 is 1 ( since \((3+0) / 2=1\) )
- So we look at array[1]
- And ask is 19 greater than or less than 6?
\(>\) Since it's greater than 6 , we next search halfway between 2 and 3 , which is \((2+3) / 2=2\)
\(>\) At index 2, we find 19 !

\section*{bindry search}

```

int binsearch(int array[], int n, int value) {
int low = 0, high = n - 1;
while (low <= high) {
int mid = (low + high)/2;
if (value < array[mid])
high = mid - 1;
else if (value > array[mid])
low = mid + 1;
else
return 1;
}
return 0;
}

```

\section*{Efficiency of Binary Search}
- Now, let's analyze how many comparisons (guesses) are necessary when running this algorithm on an array of \(n\) items.
- First, let's try \(\boldsymbol{n}=100\) :
\(>\) After 1 guess, we have 50 items left,
\(>\) After 2 guesses, we have 25 items left,
\(>\) After 3 guesses, we have 12 items left,
\(>\) After 4 guesses, we have 6 items left,
\(>\) After 5 guesses, we have 3 items left,
\(>\) After 6 guesses, we have 1 item left,
\(>\) After 7 guesses, we have 0 items left.

Also note that when n is odd, such as when \(\mathrm{n}=25\),
We search the middle element \#13, There are 12 elements smaller than it and 12 larger,
So the number of items left is slightly less than \(1 / 2\).
- The reason we have to list that last iteration is because the number of items left represent the number of other possible values to search.
\(>\) We need to reduce this number to 0 !

\section*{Efficiency of Binary Search}
- In the general case we get something like:
\(>\) After \(\mathbf{1}\) guess, we have \(\mathbf{n} / \mathbf{2}\) items left,
\(>\) After \(\mathbf{2}\) guesses, we have \(\mathbf{n} / \mathbf{4}\) items left,
\(>\) After \(\mathbf{3}\) guesses, we have \(\mathbf{n} / \mathbf{8}\) items left,
\(>\) After \(\mathbf{k}\) guesses, we have \(\mathbf{n} / \mathbf{2}^{\mathbf{k}}\) items left,

\section*{Efficiency of Binary Search}
- In the general case we get something like:
\(>\) After \(\mathbf{1}\) guess, we have \(\mathrm{n} / \mathbf{2}\) items left,
\(>\) After \(\mathbf{2}\) guesses, we have \(\mathbf{n} / \mathbf{4}\) items left,
\(>\) After \(\mathbf{3}\) guesses, we have \(\mathbf{n} / \mathbf{8}\) items left,
...
\(>\) After \(\mathbf{k}\) guesses, we have \(\mathbf{n} / \mathbf{2}^{\mathbf{k}}\) items left,
- If we can find the value that makes this fraction 1, then we know that in one more guess we'll narrow down the item:
\[
>\frac{n}{2^{k}}=1, \text { now we just solve for } k \text { (the \# of guesses) }
\]

\section*{Efficiency of Binary Search}
- In the general case we get something like:
\(>\) After \(\mathbf{1}\) guess, we have \(\mathbf{n} / \mathbf{2}\) items left,
\(>\) After \(\mathbf{2}\) guesses, we have \(\mathbf{n} / \mathbf{4}\) items left,
\(>\) After \(\mathbf{3}\) guesses, we have \(\mathbf{n} / \mathbf{8}\) items left,
...
\(>\) After \(\mathbf{k}\) guesses, we have \(\mathbf{n} / \mathbf{2}^{\mathbf{k}}\) items left,
- If we can find the value that makes this fraction 1, then we know that in one more guess we'll narrow down the item:
\(>\frac{n}{2^{k}}=1\), now we just solve for \(k\) (the \# of guesses)
\(>n=2^{k}\)
\(>k=\log _{2} n\)

\section*{Efficiency of Binary Search}
- In the general case we get something like:
\(>\) After \(\mathbf{1}\) guess, we have \(\mathbf{n} / \mathbf{2}\) items left,
\(>\) After \(\mathbf{2}\) guesses, we have \(\mathbf{n} / \mathbf{4}\) items left,
\(>\) After \(\mathbf{3}\) guesses, we have \(\mathbf{n} / \mathbf{8}\) items left,
\(>\)...
\(>\) After \(\mathbf{k}\) guesses, we have \(\mathbf{n} / \mathbf{2}^{\mathbf{k}}\) items left,
- If we can find the value that makes this fraction 1, then we know that in one more guess we'll narrow down the item:
\[
\begin{aligned}
& >\frac{n}{2^{k}}=1, \text { now we just solve for } k \text { (the \# of guesses) } \\
& >n=2^{k} \\
& >k=\log _{2^{2}} n
\end{aligned}
\]
- This means that a binary search roughly takes \(\log _{2} n\) comparisons when search for a value in a sorted array of \(n\) items.
\(>\) This is much much faster than searching linearly!

\section*{Efficiency of Binary Search}
- Let's look at a comparison of a linear search to a logarithmic search:
\begin{tabular}{|c|c|}
\hline \(\mathbf{n}\) & \(\log \mathbf{n}\) \\
\hline 8 & 3 \\
\hline 1024 & 10 \\
\hline 65536 & 16 \\
\hline 1048576 & 20 \\
\hline 33554432 & 25 \\
\hline 1073741824 & 30 \\
\hline
\end{tabular}

\section*{SinUCF}

\section*{RECURSION}

COP 3502

\section*{Recursive Binary Search}
- The iterative code is not the easiest to read, if we look at the recursive code
- It's MUCH easier to read and understand
```

int binsearch(int *values, int low, int high, int searchVal) {
int mid;
if (!terminating condition) {

```
    \}
    return 0;
\}

\section*{Recursive Binary Search}
- We need a stopping case:
\(>\) We have to STOP the recursion at some point
- Stopping cases:
1. We found the number!
2. Or we have reduced our search range to nothing - the number wasn't found \(:\)
\(>\quad\) ?? The search range would be empty when low \(>\) high
```

int binsearch(int *values, int low, int high, int searchVal) {
int mid;
if (low <= high) {
mid = (low+high)/2;
if (searchVal == values[mid])
return 1;
else if (searchVal > values[mid])
// Do something else
else
// Do something
}
return 0;
}

```

\section*{Recursive Binary Search}
- What are our recursive calls going to be?
- We need to change what low and high are
- So we get the following:
```

int binsearch(int *values, int low, int high, int searchVal) {
int mid;
if (low <= high){
mid = (low+high)/2;
if (searchVal == values[mid])
return 1;
else if (searchVal > values[mid])
// Do something else
else
// Do something
}
return 0;
}

```

\section*{Recursive Binary Search}
- Binary Search Code summary (using recursion):
- If the value is found,
\(>\) return 1
- Otherwise
>if (searchVal > values[mid])
- Recursively call binsearch to the right
>else if (searchVal < values[mid])
- Recursively call binsearch to the left
- If low is ever greater than high
\(>\) The value is not in the array return 0

\section*{Why Recursion?}
- Recursion - behind the scenes
- Every time we recurse, we are doing another function call, this results in manipulating the run-time stack in memory, passing parameters, and transferring control
\(>\) So recursion costs us both in time and memory usage

\section*{Why Recursion?}
```

Recursive Solution
int fact(int n) {
if (n==1)
return 1;
return n*fact(n-1);
}

```

\section*{Iterative Solution}
```

```
int fact(int n) {
```

```
int fact(int n) {
    int result = 1;
    int result = 1;
    while (n > 1) {
    while (n > 1) {
        result *= n--;
        result *= n--;
    }
    }
}
```

```
}
```

```
- More elegant - easier to read:
- But we aren't seeing the stack manipulations which require:
- pushing a new n,
- space for the function's return value, and updating the stack pointer register
- and popping off the return value and n when done

\section*{Why Recursion?}
- If recursion is harder to understand and less efficient, why use it?
- It leads to elegant solutions - less code, less need for local variables, etc
- If we can define a function mathematically, the solution is easy to codify
- Some problems require recursion
\(>\) Tree traversals
\(>\) Graph traversals
\(>\) Search problems
\(>\) Some sorting algorithms (quicksort, mergesort)
- Note: this is not strictly speaking true, we can accomplish a solution without recursion by using iteration and a stack, but in effect we would be simulating recursion, so why not use it?
\(>\) In some cases, an algorithm with a recursive solution leads to a lesser computational complexity than an algorithm without recursion
- Compare Insertion Sort to Merge Sort for example

\section*{Practice Problem}
- Write a recursive function that:
- Takes in 2 non-negative integers
- Returns the product
\(>\) Does NOT use multiplication to get the answer
- So if the parameters are 6 and 4
\(>\) We get 24
\(>\) Not using multiplication, we would have to do \(6+6+6+6\)```

