
Linear vs Binary

Search

COP 3502

What is recursion?
// Pre-conditions: exponent is >= to 0

// Post-conditions: returns baseexponent

int Power(int base, int exponent) {

 if (exponent == 0)

 return 1;

 else

 return (base*Power(base, exponent – 1);

}

Power(5,2) : return 5 * Power(5,1)

return 5 * Power(5,0) Power(5,1) :

return 1 Power(5,0) :

Stack trace back
to the original function call

1

5 * 1 = 5

5* 5 = 25

 To convince you that this works, let’s look at an example:
 Power(5,2):

STACK

Recursion

 Why use recursion?
 Some solutions are naturally recursive.

In these cases there might be less code for a recursive
solution, and it might be easier to read and understand.

 Why NOT user recursion?
 Every problem that can be solved with recursion can

be solved iteratively.
 Recursive calls take up memory and CPU time

Exponential Complexity – calling the Fib function uses 2n
function calls.

 Consider time and space complexity.

Recursion Example

 Let’s do another example problem – Fibonacci
Sequence

 1, 1, 2, 3, 5, 8, 13, 21, …

 Let’s create a function int Fib(int n)

 we return the nth Fibonacci number

 Fib(1) = 1, Fib(2) = 1, Fib(3) = 2, Fib(4) = 3, Fib(5) = 5,
…

 What would our base (or stopping) cases be?

Fibonacci

 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

 Base (stopping) cases:
 Fib(1) = 1
 Fib(2) = 1,

 Then for the rest of the cases: Fib(n) = ?
 Fib(n) = Fib(n-1) + Fib(n-2), for n>2

 So Fib(9) = ?
 Fib(8) + Fib(7) = 21 + 13

Recursion - Fibonacci

 See if we can program the Fibonacci
example…

Recursion - Fibonacci

 Let’s say we called Fibo(5), we can visualize
the calls to Fibo on the stack as a tree:

Fibo(5)

Fibo(4) Fibo(3)

Fibo(3) Fibo(2) Fibo(2) Fibo(1)

Fibo(2) Fibo(1)

Recursion - Fibonacci

 Let’s say we called Fibo(5), we can visualize
the calls to Fibo on the stack as a tree:

Fibo(5)

Fibo(4) Fibo(3)

Fibo(3) Fibo(2) Fibo(2) Fibo(1)

Fibo(2) Fibo(1)

Recursion - Fibonacci

 Let’s say we called Fibo(5), we can visualize
the calls to Fibo on the stack as a tree:

Fibo(5)

Fibo(4) Fibo(3)

Fibo(3) Fibo(2) Fibo(2) Fibo(1)

Fibo(2) Fibo(1)

 3+2=5

 2+1=3 1+1=2

 1+1=2 1 1 1

 1 1

Practice Problem
 Write a recursive function that:

 Takes in 2 non-negative integers

 Returns the product

Does NOT use multiplication to get the answer

int Multiply(int first, int second) {

 if ((second == 0) || (first = 0))

 return 0;

 else

 return (first + Multiply(first, second – 1));

}

Linear Search

 In C Programming, we looked at the problem of
finding a specified value in an array.
 The basic strategy was:

Look at each value in the array and compare to x
– If we see that value, return true

– else keep looking

– If we’re done looking through the array and still haven’t found it,
return false.

 int search(int array[], int len, int value) {

 int i;

 for (i = 0; i < len; i++) {

 if (array[i] == value)

 return 1;

 }

 return 0;

}

Linear Search

 For an unsorted array, this algorithm is optimal.

 There’s no way you can definitively say that a value
isn’t in the array unless you look at every single spot.

 But we might ask the question, could we find an
item in an array faster if it were already sorted?

int search(int array[], int len, int value) {

 int i;

 for (i = 0; i < len; i++) {

 if (array[i] == value)

 return 1;

 }

 return 0;

}

Binary Search

 Consider the game you probably played when
you were little:

I have a secret number in between 1 and 100, make a
guess and I’ll tell you whether your guess is too high or
too low.

Then you guess again, and continue guessing until you
guess right.

 What would a good strategy for this game be?

Binary Search

 If you divide your search space in half each time,
 you won’t run the risk of searching ¾ of the list each

time.
 For instance, if you pick 75 for your number, and you

get the response “too high”,
 Then your number is anywhere from 1-74…

 So generally the best strategy is:
 Always guess the number that is halfway between the

lowest possible value in your search range and the
highest possible value in your search range.

Binary Search
 How can we adapt this strategy to work for search for a

given value in an array?
 Given the array:

 Search for 19
 Where is halfway in between?
 One guess would be (118+2) / 2 = 60

But 60 isn’t in the list and the closest value to 60 is 41 almost at the
end of the list.

 We want the middle INDEX of the array.
 In this case: The lowest index is 0, the highest is 8, so the middle

index is 4!

Index 0 1 2 3 4 5 6 7 8

Value 2 6 19 27 33 37 38 41 118

M

I

D

L

O

W

H

I

Binary Search
 Searching for 19:

 Now we ask,

 Is 19 greater than, or less than, the number at
index 4?

It is Less than, so now we only want to search from
index 0 to index 3.

Index 0 1 2 3 4 5 6 7 8

Value 2 6 19 27 33 37 38 41 118

M

I

D

Binary Search
 Searching for 19:

 The middle of 0 and 3 is 1 (since (3+0)/2 = 1)
 So we look at array[1]

 And ask is 19 greater than or less than 6?
Since it’s greater than 6, we next search halfway

between 2 and 3, which is (2+3)/2 = 2

At index 2, we find 19!

Index 0 1 2 3 4 5 6 7 8

Value 2 6 19 27 33 37 38 41 118

Don’t care about
these anymore!

M

I

D

L

O

W

H

I

L

O

W

M

I

D

Binary Search

Index 0 … … … n/2 … … … n

Value x1 x2 x… x… x… x… x… x… xn

M

I

D

L

O

W

H

I

int binsearch(int array[], int n, int value) {

 int low = 0, high = n – 1;

 while (low <= high) {

 int mid = (low + high)/2;

 if (value < array[mid])

 high = mid – 1;

 else if (value > array[mid])

 low = mid + 1;

 else

 return 1;

 }

 return 0;

}

Efficiency of Binary Search

 Now, let’s analyze how many comparisons (guesses) are
necessary when running this algorithm on an array of n
items.

 First, let’s try n = 100:

After 1 guess, we have 50 items left,
After 2 guesses, we have 25 items left,
After 3 guesses, we have 12 items left,
After 4 guesses, we have 6 items left,
After 5 guesses, we have 3 items left,
After 6 guesses, we have 1 item left,
After 7 guesses, we have 0 items left.

 The reason we have to list that last iteration is because the
number of items left represent the number of other
possible values to search.
We need to reduce this number to 0!

Also note that when n is odd,
such as when n = 25,
We search the middle element #13,
There are 12 elements smaller than it
and 12 larger,
So the number of items left is
slightly less than 1/2.

Efficiency of Binary Search

Efficiency of Binary Search

Efficiency of Binary Search

Efficiency of Binary Search

Efficiency of Binary Search

 Let’s look at a comparison of a linear search to
a logarithmic search:

 n log n

8 3

1024 10

65536 16

1048576 20

33554432 25

1073741824 30

Recursion

COP 3502

Recursive Binary Search

 The iterative code is not the easiest to read, if
we look at the recursive code

 It’s MUCH easier to read and understand

int binsearch(int *values, int low, int high, int searchVal) {

 int mid;

 if (!terminating condition){

 }

 return 0;

}

Recursive Binary Search

int binsearch(int *values, int low, int high, int searchVal) {

 int mid;

 if (!terminating condition){

 }

 return 0;

}

 We need a stopping case:
 We have to STOP the recursion at some point

 Stopping cases:
1. We found the number!
2. Or we have reduced our search range to nothing – the number

wasn’t found
 ?? The search range would be empty when low > high

int binsearch(int *values, int low, int high, int searchVal) {

 int mid;

 if (low <= high){

 mid = (low+high)/2;

 if (searchVal == values[mid])

 return 1;

 }

 return 0;

}

int binsearch(int *values, int low, int high, int searchVal) {

 int mid;

 if (low <= high){

 mid = (low+high)/2;

 if (searchVal == values[mid])

 return 1;

 // Otherwise recursively search here

 }

 return 0;

}

int binsearch(int *values, int low, int high, int searchVal) {

 int mid;

 if (low <= high){

 mid = (low+high)/2;

 if (searchVal == values[mid])

 return 1;

 else if (searchVal > values[mid])

 // Do something else

 else

 // Do something

 }

 return 0;

}

Recursive Binary Search
 What are our recursive calls going to be?

 We need to change what low and high are

 So we get the following:

int binsearch(int *values, int low, int high, int searchVal) {

 int mid;

 if (low <= high){

 mid = (low+high)/2;

 if (searchVal == values[mid])

 return 1;

 else if (searchVal > values[mid])

 return binsearch(values, mid+1, high, searchval)

 else

 return binsearch(values, low, mid-1, searchval);

 }

 return 0;

}

int binsearch(int *values, int low, int high, int searchVal) {

 int mid;

 if (low <= high){

 mid = (low+high)/2;

 if (searchVal == values[mid])

 return 1;

 else if (searchVal > values[mid])

 // Do something else

 else

 // Do something

 }

 return 0;

}

Recursive Binary Search

 Binary Search Code summary (using recursion):
 If the value is found,

return 1

 Otherwise
if (searchVal > values[mid])

– Recursively call binsearch to the right

else if (searchVal < values[mid])

– Recursively call binsearch to the left

 If low is ever greater than high

The value is not in the array return 0

Why Recursion?

 Recursion – behind the scenes
 Every time we recurse, we are doing another function call,

this results in manipulating the run-time stack in memory,
passing parameters, and transferring control
So recursion costs us both in time and memory usage

Why Recursion?

Recursive Solution

 More elegant – easier to read:
 But we aren’t seeing the stack

manipulations which require:
 pushing a new n,
 space for the function’s return

value, and updating the stack
pointer register

 and popping off the return
value and n when done

Iterative Solution

int fact(int n) {

 if (n==1)

 return 1;

 return n*fact(n-1);

}

int fact(int n) {

 int result = 1;

 while (n > 1) {

 result *= n--;

 }

}

Why Recursion?
 If recursion is harder to understand and less efficient, why

use it?
 It leads to elegant solutions – less code, less need for local

variables, etc
 If we can define a function mathematically, the solution is easy to

codify
 Some problems require recursion

Tree traversals
Graph traversals
Search problems
Some sorting algorithms (quicksort, mergesort)

– Note: this is not strictly speaking true, we can accomplish a solution without
recursion by using iteration and a stack, but in effect we would be simulating
recursion, so why not use it?

 In some cases, an algorithm with a recursive solution leads to a lesser
computational complexity than an algorithm without recursion

– Compare Insertion Sort to Merge Sort for example

Practice Problem

 Write a recursive function that:

 Takes in 2 non-negative integers

 Returns the product

Does NOT use multiplication to get the answer

 So if the parameters are 6 and 4

We get 24

Not using multiplication, we would have to do 6+6+6+6

