" &
SOHUCE

LINEAR VS BINARY
SEARCH

COP 3502

// Pre-conditions: exponent is >= to 0
// Post-conditions: returns baseSsxponent

int Power (int base, int exponent) ({

if (exponent == 0)
return 1;
else
return (base*Power (base, exponent - 1);

To convince you that this works, let’s look at an example:
Power(5,2):

Power(5,0) : | | return 1 1
ﬁ t 3
Power(5,1) : | | return 5 * Power(5,0) F S
7
Power(5,2) : | | return 5 * Power(5,1) 5%*5=25
STACK Stack trace back

to the original function call

Recursion

Why use recursion?

Some solutions are naturally recursive.

In these cases there might be less code for a recursive
solution, and it might be easier to read and understand.

Why NOT user recursion?

Every problem that can be solved with recursion can
be solved iteratively.

Recursive calls take up memory and CPU time

Exponential Complexity — calling the Fib function uses 2"
function calls.

Consider time and space complexity.

&

Recursion Example

Let’s do another example problem — Fibonacci
Sequence

1,1, 2,3,5,38, 13, 21, ..

Let’s create a function int Fib (int n)

we return the nth Fibonacci number
Fib(1) = 1, Fib(2) = 1, Fib(3) = 2, Fib(4) = 3, Fib(5) = 5,

What would our base (or stopping) cases be?
(pping) G

Fibonacci
1,1, 2,3,5,8, 13, 21, 34, 55, 89, 144, ...

Base (stopping) cases:
Fib(1) = 1
Fib(2) = 1,

Then for the rest of the cases: Fib(n) ="
Fib(n) = Fib(n-1) + Fib(n-2), for n>2

So Fib(9) =7
Fib(8) + Fib(7) =21 + 13

Recursion - Fibonacci

See if we can program the Fibonacci
example...

Recursion - Fibonacci

Let’s say we called Fibo(5), we can visualize
the calls to Fibo on the stack as a tree:

Fibo(5)
/\
Fibo(4) Fibo(3)
Fibo(3) Fibo(2) Fibo(2) | | Fibo(1)

AR

Fibo(2) | | Fibo(1)

%

Recursion - Fibonacci

Let’s say we called Fibo(5), we can visualize
the calls to Fibo on the stack as a tree:

Fibo(5)
/\
Fibo(4) Fibo(3)
Fibo(3) Fibo(2) Fibo(2) | | Fibo(1)

AR

Fibo(2) | | Fibo(1)

%

Recursion - Fibonacci

Let’s say we called Fibo(5), we can visualize
the calls to Fibo on the stack as a tree:

3+2=5
— 7 —_
2+1=3 1+1=2
1+1=2 1 1 1
1 1

%

Practice Problem

Write a recursive function that:
Takes in 2 non-negative integers

Returns the product
Does NOT use multiplication to get the answer

int Multiply(int first, int second) {
if ((second == 0) || (first = 0))
return 0O;
else

return (first + Multiply(first, second - 1));

Linear Search

In C Programming, we looked at the problem of
finding a specified value in an array.

The basic strategy was:

Look at each value in the array and compare to x
If we see that value, return true
else keep looking

If we’re done looking through the array and still haven’t found it,
return false.

int search(int array[], int len, int wvalue) {
int i;
for (i = 0; i < len; i++) {
if (array[i] == value)

return 1;

}

return O0;

Linear Search

For an unsorted array, this algorithm is optimal.
There’s no way you can definitively say that a value

isn’t in the array unless you look at every single spot.

But we might ask the question, could we find an
item in an array faster if it were already sorted?

int search(int array[], int len, int wvalue) {
int i;
for (i = 0; i < len; i++) {
if (array[i] == value)

return 1;

}

return O0;

Binary Search

Consider the game you probably played when
you were little:

| have a secret number in between 1 and 100, make a
guess and I'll tell you whether your guess is too high or
too low.

Then you guess again, and continue guessing until you
guess right.

What would a good strategy for this game be?

&

Binary Search

If you divide your search space in half each time,

you won’t run the risk of searching % of the list each
time.

For instance, if you pick 75 for your number, and you
get the response “too high”,

Then your number is anywhere from 1-74...

So generally the best strategy is:

Always guess the number that is halfway between the
lowest possible value in your search range and the
highest possible value in your search range.

&

Binary Search

How can we adapt this strategy to work for search for a
given value in an array?

Given the array:

g

Index | O 1

8

Value | 2 6

19

27

33

37

38

41

118

Search for 19

Where is halfway in between?

One guess would be (118+2) /2 =60

But 60 isn’t in the list and the closest value to 60 is 41 almost at the

end of the list.

We want the middle INDEX of the array.

In this case: The lowest index is 0, the highest is 8, so the middle

index is 4!

&

Searching for 19:

Binary Search

3

Index | O

1

4

Value | 2

6

19

27

33

37

38

41

118

Now we ask,
Is 19 greater than, or less than, the number at

index 47

It is Less than, so now we only want to search from

index O to index 3.

&

Binary Search
= Searching for 19: Don e

these anymore!
$134 |

Index | O 1 2 3 4 5 6 7 8
Value | 2 6 19 27 |33 |37 (38 (41 |118

® The middle of 0 and 3 is 1 (since (3+0)/2 = 1)

So we look at array[1]

And ask is 19 greater than or less than 67

»Since it’s greater than 6, we next search halfway
between 2 and 3, which is (2+3)/2 =2

» At index 2, we find 19! @

Binary Search

Index | O e |INf2].0 .. we |'N

Value x1 xZ x... x... x... x... x... x... xn

int binsearch(int array[], int n, int value) {
int low = 0, high = n - 1;

while (low <= high) {

int mid = (low + high)/2;

if (value < array[mid])
high = mid - 1;

else if (value > array[mid])
low = mid + 1;

else
return 1;

}

return 0;

Efficiency of Binary Search

Now, let’s analyze how many comparisons (guesses) are
necessary when running this algorithm on an array of n
items.

First, let’s try n = 100:
After 1 guess, we have 50 items left, Also note that when n is odd,
After 2 guesses, we have 25 items left, such as when n = 25,
After 3 guesses, we have 12 items left, We search the middle element #13, _
ena guesses, we have 6 items left, Thzrezalre 12 elements smaller than it
After 5 guesses, we have 3 items left, 22 thle nirriirér of itare ey

After 6 guesses, we have 1 item left, slightly less than 1/2.

After 7 guesses, we have 0 items left.

The reason we have to list that last iteration is because the
number of items left represent the number of other
possible values to search. &

We need to reduce this number to 0!

Efficiency of Binary Search

In the general case we get something like:
After 1 guess, we have n/2 items left,
After 2 guesses, we have n/4 items left,
After 3 guesses, we have n/8 items left,

After k guesses, we have n/2*items left,

Efficiency of Binary Search

% Inthe general case we get something like:
~ After 1 guess, we have n/2 items left,
~ After 2 guesses, we have n/4 items left,
~ After 3 guesses, we have n/8 items left,

~ After k guesses, we have n/2kitems left,
If we can find the value that makes this fraction 1, then we know that

in one more guess we’ll narrow down the item:

> % = 1, now we just solve for k (the # of guesses)

~l-

Efficiency of Binary Search

% Inthe general case we get something like:
~ After 1 guess, we have n/2 items left,
~ After 2 guesses, we have n/4 items left,
~ After 3 guesses, we have n/8 items left,

~ After k guesses, we have n/2kitems left,

If we can find the value that makes this fraction 1, then we know that

in one more guess we’ll narrow down the item:
n

> e 1, now we just solve for k (the # of guesses)
> n= Zk
» k=log,n

Efficiency of Binary Search

% Inthe general case we get something like:
~ After 1 guess, we have n/2 items left,
~ After 2 guesses, we have n/4 items left,
~ After 3 guesses, we have n/8 items left,

~ After k guesses, we have n/2kitems left,

If we can find the value that makes this fraction 1, then we know that

in one more guess we’ll narrow down the item:
n

> e 1, now we just solve for k (the # of guesses)
> n= Zk
» k=log,n

This means that a binary search roughly takes /og,n

comparisons when search for a value in a sorted array of n
items.

~ This is much much faster than searching linearly! @

Efficiency of Binary Search

" Let’s look at a comparison of a linear search to
a logarithmic search:

8 3
1024 10
65536 16
1048576 20
33554432 25
1073741824 30

<
SuUCF
RECURSION

COP 3502

Recursive Binary Search

The iterative code is not the easiest to read, if
we look at the recursive code

It’s MUCH easier to read and understand

int binsearch(int *values, int low, int high, int searchVal) {
int mid;
if ('terminating condition) {

}

return O0;

Recursive Binary Search

We need a stopping case:
We have to STOP the recursion at some point
Stopping cases:
We found the number!

Or we have reduced our search range to nothing — the number
wasn’t found ®

?? The search range would be empty when low > high

int binsearch(int *values, int low, int high, int searchVal) {
int mid;
if () {
mid = (low+high)/2;

else if (searchVal > values[mid])
// Do something else

else
// Do something

Recursive Binary Search

What are our recursive calls going to be?
We need to change what low and high are
So we get the following:

int binsearch(int *values, int low, int high, int searchVal) {
int mid;
if () {
mid = (low+high)/2;

else if (searchVal > values[mid])

// Do something else
else
// Do something

Recursive Binary Search

Binary Search Code summary (using recursion):

If the value is found,
return 1

Otherwise

i1f (searchVal > wvalues[mid])
Recursively call binsearch to the right
else if (searchVal < values[mid])
Recursively call binsearch to the left
If low 1s ever greater than high

The value is not in the array return 0O

Why Recursion?

Recursion — behind the scenes

Every time we recurse, we are doing another function call,
this results in manipulating the run-time stack in memory,
passing parameters, and transferring control

So recursion costs us both in time and memory usage

Why Recursion?

Recursive Solution Iterative Solution
int fact(int n) { int fact(int n) {
if () int result = 1;
while (n > 1) {

return n*fact(n-1); result *= n--:

}

" More elegant — easier to read:

= But we aren’t seeing the stack
manipulations which require:
= pushing a new n,

= space for the function’s return
value, and updating the stack
pointer register

= and popping off the return
value and n when done

Why Recursion?

If recursion is harder to understand and less efficient, why
use it?
It leads to elegant solutions — less code, less need for local
variables, etc

If we can define a function mathematically, the solution is easy to
codify
Some problems require recursion

Tree traversals
Graph traversals
Search problems

Some sorting algorithms (quicksort, mergesort)

Note: this is not strictly speaking true, we can accomplish a solution without
recursion by using iteration and a stack, but in effect we would be simulating
recursion, so why not use it?
In some cases, an algorithm with a recursive solution leads to a lesser
computational complexity than an algorithm without recursion @
S

Compare Insertion Sort to Merge Sort for example

Practice Problem

Write a recursive function that:
Takes in 2 non-negative integers

Returns the product
Does NOT use multiplication to get the answer

So if the parameters are 6 and 4
We get 24
Not using multiplication, we would have to do 6+6+6+6

&

