
Linked List Operations

COP 3502

Linked List Operations

 There are several basic operations that need to
be performed on linked lists:
1) Adding a node.

2) Deleting a node.

3) Searching for a node.

 We will build functions to perform these operations.

 There are of course many other operations you
could do:
 Counting nodes, modifying nodes, reversing the list,

and more.

 We can also build functions for these.

Linked List Operations

 Design

 Functions that change the contents of lists (i.e.
insertion and deletion) will return the head
pointer.

For, example: head = insertNode(head, 12);

Why must we return the head pointer?
– If the first node in the list has changed inside the insertNode

function we need our head pointer to reflect these changes.

– If the head pointer doesn’t change within the function, then
head is just reset to its original address.

Linked List Operations

 Design

 Functions that do not change the contents of the
list, return values according to their purpose.

For example, if we want to search for a node and return
0 or 1 if it’s found.

Or if we want to count the number of nodes in our list.

 And some functions that process the entire list are
void, such as functions that print the list.

Linked Lists: Insert In Order

 Let’s implement a function that will insert a node in
order into our linked list.

 Useful if we want to keep a sorted list (useful for HW#2)

 The cases we will have to check for are:

1) The list is empty

2) The element is less than the first node

3) The element is inserted into the middle of our list

4) The element is inserted at the end of our list.

 We already know how to do cases 1,2, and 4!

 And really we’re going to merge case 3 and 4, so this should
be pretty easy for us!

Linked Lists: Insert In Order

Case 1) The list is empty:
 Create the new node, and if the list is empty return the new

node.

 Simple!

NULL head

NULL 4 next temp 7

NULL 4 next

head

7

Linked Lists: Insert In Order

Case 2) The element is < the head:
 In this case we want to add the element to the front of the

list

 We already know how to do this!

1) Create the new node

2) Set the new node’s next to head

3) Return temp.

 4

temp

4 1 2 3 NULL

head

Linked Lists: Insert In Order
Case 3/4) Insert the element in the middle or end of

our list.
 In this case we need to traverse the list while our element is

less than the curr element.

 Then we add the element after the curr and before

 curr->next;

 1 2 3

head

 5 NULL

 4 NULL temp 4

curr save

Linked Lists: Insert In Order
Case 3/4) Insert the element in the middle or end of

our list.
 In this case we need to traverse the list while our element is

less than the curr element.

 Then we add the element after the curr and before

 curr->next;

 1 2 3

head

 5 NULL

 4 NULL temp 4

curr save

Linked Lists: Insert In Order
Case 3/4) Insert the element in the middle or end of

our list.
 In this case we need to traverse the list while our element is

less than the curr element.

 Then we add the element after the curr and before

 curr->next;

 1 2 3

head

 5 NULL

 4 NULL temp 4

curr save

Linked Lists: Insert In Order
Case 3/4) Insert the element in the middle or end of

our list.
 In this case we need to traverse the list while our element is

less than the curr element.

 Then we add the element after the curr and before

 curr->next;

 1 2 3

head

 5 NULL 4 4

struct node* InsertInorder(node *head, int num) {

 // Create the new node

 // Case 1: Inserting into an empty list.

 // Case 2: Element is < the front

 // Case 3/4: Insert element in the middle/end

 // Use curr to traverse to the right spot

 // to insert temp.

 // Save the node to temp should point to.

 // Insert temp.

 // Return a pointer to the front of the list.

}

struct node* InsertInorder(node *head, int num) {

 // Create the new node

 node *temp = (node*)malloc(sizeof(node));

 temp->data = num;

 temp->next = NULL;

 // Case 1: Inserting into an empty list.

 // Case 2: Element is < the front

 // Case 3/4: Insert element in the middle/end

 // Use curr to traverse to the right spot

 // to insert temp.

 // Save the node to temp should point to.

 // Insert temp.

 // Return a pointer to the front of the list.

struct node* InsertInorder(node *head, int num) {

 // Create the new node

 node *temp = (node*)malloc(sizeof(node));

 temp->data = num;

 temp->next = NULL;

 // Case 1: Inserting into an empty list.

 if (front == NULL) return temp;

 // Case 2: Element is < the front

 // Case 3/4: Insert element in the middle/end

 // Use curr to traverse to the right spot

 // to insert temp.

 // Save the node to temp should point to.

 // Insert temp.

 // Return a pointer to the front of the list.

struct node* InsertInorder(node *head, int num) {

 // Create the new node

 node *temp = (node*)malloc(sizeof(node));

 temp->data = num;

 temp->next = NULL;

 // Case 1: Inserting into an empty list.

 if (front == NULL) return temp;

 // Case 2: Element is < the front

 if (num < front->data) {

 temp->next = front;

 return temp;

 }

 // Case 3/4: Insert element in the middle/end

 // Use curr to traverse to the right spot

 // to insert temp.

 // Save the node to temp should point to.

 // Insert temp.

 // Return a pointer to the front of the list.

struct node* InsertInorder(node *head, int num) {

 // Create the new node

 // Case 1: Inserting into an empty list.

 // Case 2: Element is < the front

 // Case 3/4: Insert element in the middle/end

 // Use curr to traverse to the right spot

 // to insert temp.

 // Save the node to temp should point to.

 // Insert temp.

 // Return a pointer to the front of the list.

struct node* InsertInorder(node *head, int num) {

 // Create the new node

 // Case 1: Inserting into an empty list.

 // Case 2:

 // Case 3/4: Insert element in the middle/end

 // Use curr to traverse to the right spot

 // to insert temp.

 node *curr = head;

 while(curr->next != NULL &&

 curr->data < temp->data)

 curr = curr->next;

 // Save the node to temp should point to.

 // Insert temp.

 // Return a pointer to the front of the list.

struct node* InsertInorder(node *head, int num) {

 // Create the new node

 // Case 1: Inserting into an empty list.

 // Case 2: Element is < the front

 // Case 3/4: Insert element in the middle/end

 // Use curr to traverse to the right spot

 // to insert temp.

 node *curr = head;

 while(curr->next != NULL &&

 curr->data < temp->data)

 curr = curr->next;

 // Save the node to temp should point to.

 node *save = curr->next;

 // Insert temp.

 // Return a pointer to the front of the list.

struct node* InsertInorder(node *head, int num) {

 // Create the new node

 // Case 1: Inserting into an empty list.

 // Case 2: Element is < the front

 // Case 3/4: Insert element in the middle/end

 // Use curr to traverse to the right spot

 // to insert temp.

 node *curr = head;

 while(curr->next != NULL &&

 curr->data < temp->data)

 curr = curr->next;

 // Save the node to temp should point to.

 node *save = curr->next;

 // Insert temp.

 curr->next = temp;

 temp->next = save;

 // Return a pointer to the front of the list.

struct node* InsertInorder(node *head, int num) {

 // Create the new node

 // Case 1: Inserting into an empty list.

 // Case 2: Element is < the front

 // Case 3/4: Insert element in the middle/end

 // Use curr to traverse to the right spot

 // to insert temp.

 node *curr = head;

 while(curr->next != NULL &&

 curr->data < temp->data)

 curr = curr->next;

 // Save the node to temp should point to.

 node *save = curr->next;

 // Insert temp.

 curr->next = temp;

 temp->next = save;

 // Return a pointer to the front of the list.

 return head;

}

Deleting Nodes

 General Approach:

1) Search for the node you want to delete

2) If found, delete the node from the list

3) To delete, you must make sure:

 The predecessor of the deleted node points to the
deleted node’s successor

4) Finally, free the node

 e.g. the node is physically removed from the heap
memory.

Deleting Nodes

 There are 4 cases we need to deal with:

1) Delete the 1st node of a list.

2) Delete any middle node of a list (not the first or
the last)

3) Delete the last node of the list.

4) We delete the ONLY node in the list.

 The resulting list is then empty.

Deleting Nodes

 Case 1) Delete the 1st node of a list

 1 2 3 NULL

head
Want to delete

this node:

 2 3 NULL

head Resulting List:

Deleting Nodes
 Case 1) Delete the 1st node of a list

 1 2 3 NULL

head

Want to delete
this node:

 2 3 NULL head

Resulting List:

 1 2 3 NULL

head

del

node *del = head;
head = head->next;

free(del);

Deleting Nodes

 Case 2) Delete the middle node of a list

 1 2 3 NULL

head

Want to delete
this node:

Deleting Nodes

 Case 2) Delete the middle node of a list

 1 2 3 NULL

head

curr del

node *curr = head;

// Traverse the list until curr->next == val

while (curr->next != NULL) {

 if (curr->next->data == val) {

 node *del = curr->next;

 curr->next = curr->next->next;

 free(del);

 return head;

 }

 curr = curr->next;

}

 Case 2) Delete the middle node of a list

 1 2 3 NULL

head

curr

del

node *curr = head;

// Traverse the list until curr->next == val

while (curr->next != NULL) {

 if (curr->next->data == val) {

 node *del = curr->next;

 curr->next = curr->next->next;

 free(del);

 return head;

 }

 curr = curr->next;

}

Deleting Nodes

 Case 3) Delete the last node of a list

 1 2 3 NULL

head

curr

node *curr = head;

// Traverse the list until curr->next == val

while (curr->next != NULL) {

 if (curr->next->data == val) {

 node *del = curr->next;

 curr->next = curr->next->next;

 free(del);

 return head;

 }

 curr = curr->next;

}

Want to delete
this node:

 Case 3) Delete the last node of a list

 1 2 3 NULL

head

curr

node *curr = head;

// Traverse the list until curr->next == val

while (curr->next != NULL) {

 if (curr->next->data == val) {

 node *del = curr->next;

 curr->next = curr->next->next;

 free(del);

 return head;

 }

 curr = curr->next;

}

del

 Case 3) Delete the last node of a list

 1 2 NULL

head

curr

node *curr = head;

// Traverse the list until curr->next == val

while (curr->next != NULL) {

 if (curr->next->data == val) {

 node *del = curr->next;

 curr->next = curr->next->next;

 free(del);

 return head;

 }

 curr = curr->next;

}

Deleting Nodes

 Case 4) Delete the ONLY node of a list

 1
head

// We want to:

free(head);

return NULL;

But this will fit in with case #1;

Want to delete
this node:

NULL

node* delete(node *head, int num) {

 if (head == NULL) return head;

 // Case 1/4: Delete 1st node, or ONLY node

 // Case 2/3: Delete middle/last node

 // Loop until you find node to delete

 // We didn’t find it, so return original head

 return head;

}

node* delete(node *head, int num) {

 if (head == NULL) return head;

 // Case 1/4: Delete 1st node, or ONLY node

 node *curr = head;

 if (curr->data == num) {

 node *temp = curr->next;

 free(curr);

 return temp;

 }

 // Case 2/3: Delete middle/last node

 // Loop until you find node to delete

 // We didn’t find it, so return original head

 return head;

}

node* delete(node *head, int num) {

 if (head == NULL) return head;

 // Case 1/4: Delete 1st node, or ONLY node

 // …

 // Case 2/3: Delete middle/last node

 // Loop until you find node to delete

 node *curr = head;

 while (curr >next != NULL) {

 if (curr ->next->data == num) {

 node *del = curr -> next;

 curr >next = curr ->next->next;

 free(del);

 return front;

 }

 curr = curr->next;

 }

 // We didn’t find it, so return original head

 return head;

}

Deleting the Entire List

 head = freeList(head);

node* freeList(node *head) {

 node *curr = head;

 while (curr != NULL) {

 node *temp = curr;

 curr = curr->next;

 free(temp);

 }

 return NULL;

}

Linked List Practice Problem

 Write a recursive function that deletes every
other node in the linked list pointed to by the
input parameter head. (Specifically, the 2nd 4th
6th etc. nodes are deleted)

void delEveryOther(node* head){

}

