<
SHUCF
LINKED LIST INTRO

COP 3502

Linked List Introduction
A Linked List

Is the simplest form of a linked structure.
It consists of a chain of data locations called nodes

wWBllm— sl

A node

Holds a piece of information AND
a link to the next node

node

struct node {
int data; 8

' data next @

struct node* next;

Linked List Introduction

What are Linked Lists?

Abstraction of a list

that is, a sequence of nodes in which each node is linked to
the node following it.

Why not use an array?

Each node in an array is stored in a contiguous space
in memory, this means:

Arrays are fixed size (not dynamic)
We could realloc more space, but this requires work
Inserting and deleting elements is difficult

For example, in an array of size 100, if we want to insert an
element after the 10% element — what do we have to do?

We have to shift the remaining 90 elements in some way. @

Linked List Introduction

Pros

They are dynamic — so length can increase or decrease

dS necessary.

Each node does not necessarily follow the previous
one in memory.

Insertion and deletion is cheap

Only need to change a few nodes (at most)

Is there a negative aspect of linked lists?

We do not know the address of any individual node

So we have to traverse the list to find it, which may take a
large # of operations.

Linked List Example

struct node {

Let’s say we declare 3 int data:
Linked List nodes in } struct node* next;
memaory: ,

struct node a, b, c;

a.data = 1;

b.data = 2;

c.data = 3;

a.next = b.next = c.next = NULL;

a

: C
1 INULL 2 |NULL 3 INULL :
ata next ata next ata next @

Linked List Example

V4
Let’s say we declare 3 struct node {
Linked List nodes in int data;

struct node* next;

memory: }

a.next = &b;

.next = &c;
next->data Hasvalue2
.next->next->data Hasvalue3

.next->next->data Error!

a C
ELIM—% 2 3 I NULL .
ata next ata next ata next @

o o p O

Linked Lists in Detail

= A linked list is an ordered collection of data

Each element (generally called nodes) contains the location
of the next element in the list

Each node essentially has 2 parts:

The data part
» For our examples we’re usually just going to use an int, but really we
could store anything in each node.
» If we wanted a linked list of student records we could store PIDs,

names, grades, etc.

name | PID rade | next

The link part
»This link is used to connect the nodes together.

> It is just a pointer to the next node in the list.
» This variable is usually called “next”

%

Linked Lists

: struct node ({
Node 3 data fields char PID[8];

char name[80];

int gradePts;
struct node* next;

Sarah I5123I 100 I NULLH Dixie IdOOOI 10 INULL
name PID grade next name PID grade next

struct node sl; struct node s2;
strcpy(sl.name, “Sarah”) ; strcpy(sl.name, “Dixie”);
strcpy(sl.PID, “s123”); strcpy(sl.PID, “d000”) ;
sl.grade = “100”; sl.grade = “10”; .
sl .next = NULL; sl.next = NULL; gg&

sl.next = &s2;

Linked Lists

" How to access nodes of a linked list

Each node of the list is created dynamically and
points to the next node in the list

»So from the first node, we can get to the second, etc.

But how do you reach the first node?

»You must have a pointer variable that simply points to the
front of the list, or the 15t node of the list.

»This pointer can be called whatever you want.
head

head—>| data | next —>| data | next —> data | next auu
AN

Linked Lists

Example of an Empty Linked List
struct node* head = NULL;

head—> NULL

%

Linked Lists

" How to access nodes of a linked list

Let’s assume we already have a list created with
several nodes

»Don’t worry how we made it, we’ll cover adding to a list
after we cover traversing a list.

We access the list via the pointer head
»How would you move to the 2" node in the list?

head—>: data | next —>| data | next —>| data | next | z:uu
AN

Linked Lists

" How to access nodes of a linked list

One of the most common errors is to move the head
of the list.

»if we make the head ptr point to the second node in the
list, we would have NO way to access the first record.

»So rather than do that, what we need is a temporary
pointer to help us move through the list.

head™—>| data | next | —>| data | next >@NULL
AN

Linked Lists

" How to access nodes of a linked list

We can define a helper pointer as follows:
struct node *help ptr;
help ptr = head;

" Something to notice:

head and help ptr are pointing to the
exact same linked list node.

head M—%nm—aw
AN

Linked Lists

" How to access nodes of a linked list

Another side note, in order to access that first node’s
data field, Could we do the following?

>head.data No, because head is a pointer

> (*head) .data YyEs

» (*help ptr) .data YES

»head->data YES

help ptr->data YES

head —>|data | next —>{data | next[~> NULL

Linked Lists

" How to access nodes of a linked list

Now consider using the pointer help ptr to traverse
the list pointed to by head, we could do something like
this:

»help ptr = help ptr->next;

Note that the syntax is correct because both sides of the statement
our pointers to linked lists.

Then we could refer to the data in the 2"9 node using what syntax?

* help ptr->data

il nuu.
&

Linked Lists

Apply this procedure to print a linked list:

Assume head is already pointing to a valid list of values

struct node *help ptr; < EEEEE————
help ptr = head; A —

while (help ptr != NULL) { < 123

printf("sd ", help ptr->data); ¢=mm
help ptr = help ptr->next; —

3 l next —> NULL

Linked Lists: How to Add a Node

This is how to create a node to be added to a list:

struct node *temp;

temp = (struct node*)malloc(sizeof (struct node)) ;
temp->data = 7;
temp->next =

Now to add this node to the end of a list,

NULL;

Assume help ptr is already pointing to the last node in

some list.

Then all we have to do is connect the node help ptr is

pointing to, to temp:
help ptr->next

help_ptr

head—> 1 next

temp;

-

next

next

NULL

Linked Lists: How to Add a Node

Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int wval) {
// Create the new node

// if the list is empty (head == NULL) return
// the new node

// Create a helper pointer to traverse the list

// Traverse the list until the end
// Add the new node to the end

// return the front of the list

struct node* AddEnd(struct node* head, int wval) {
// Create the new node

// if the list is empty (head == NULL) return
// the new node

// Create a helper pointer to traverse the list

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

struct node* AddEnd(struct node* head, int wval) {
// Create the new node

// if the list is empty (head == NULL) return
// the new node

// Create a helper pointer to traverse the list

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

struct node* AddEnd(struct node* head, int wval) {
// Create the new node
struct node *temp;
temp = (struct node*)malloc (sizeof (struct node)) ;
temp->data = val;
temp->next = NULL;

// Create a helper pointer to traverse the list

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

struct node* AddEnd(struct node* head, int wval) {
// Create the new node
struct node *temp;
temp = (struct node*)malloc (sizeof (struct node)) ;
temp->data = val;
temp->next = NULL;
if (head == NULL) return temp;

// Create a helper pointer to traverse the list

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

struct node* AddEnd(struct node* head, int wval) {
// Create the new node
struct node *temp;
temp = (struct node*)malloc (sizeof (struct node)) ;
temp->data = val;
temp->next = NULL;

if (head == NULL) return temp;
// Create a helper pointer to traverse the list
struct node *curr;

curr = head;

// Traverse the list until the end

// Add the new node to the end

// return the front of the list

struct node* AddEnd(struct node* head, int wval) {
// Create the new node
struct node *temp;
temp = (struct node*)malloc (sizeof (struct node)) ;
temp->data = val;
temp->next = NULL;

if (head == NULL) return temp;

// Create a helper pointer to traverse the list
struct node *curr;

curr = head;

// Traverse the list until the end

while (curr->next '= NULL) {
curr = curr>next;

// return the front of the list

struct node* AddEnd(struct node* head, int wval) {
// Create the new node
struct node *temp;
temp = (struct node*)malloc (sizeof (struct node)) ;
temp->data = val;
temp->next = NULL;

if (head == NULL) return temp;

// Create a helper pointer to traverse the list
struct node *curr;

curr = head;

// Traverse the list until the end

while (curr->next '= NULL) {
curr = curr>next;

curr->next = temp;

Linked Lists

Let’s show an example of creating a list using
the function we just created...

shown in class

Linked Lists: How to Add a Node

Now we can create a function that traverses a
list and adds a node to the end of the list:

struct node* AddEnd(struct node* head, int wval) {
struct node *temp;
temp = (struct node*)malloc (sizeof (struct node)) ;
temp->data = val;
temp->next = NULL;

if (head == NULL) return temp;

struct node *curr;
curr = head;

while (curr->next!= NULL) {

curr = curr>next;
1

