
Dynamic Memory Allocation

COP 3502

Dynamically Allocated Memory in C

 All throughout COP 3223, all examples of
variable declarations were statically allocated
memory.

 We will work with 2 types of memory in C:

 Static –

“not changing”

 Dynamic –

“changeable” (roughly speaking ;)

Dynamically Allocated Memory in C

1) Static
 The memory requirements are known at compile time.
 Specifically, after a program compiles the compiler can

perfectly predict how much memory will be needed and
when for statically allocated variables.

 A program can have different inputs on each execution
of the code
 But this does NOT affected the amount of memory allocated.

 The memory is only allocated for a static variable while
in the function it was declared in is running.
 For Example: if you declare int x within function

someFunc, once function someFunc has completed, the
memory for x is no longer saved.

Dynamically Allocated Memory in C

1) Dynamic

 The memory requirements NOT known at compile time

 It may be the case that on different executions of the program,
different amounts of memory are allocated;

– the input may affect memory allocation.

 If you want to allocate memory in one function, AND have
that memory available after the function is completed,

 you HAVE to allocate memory dynamically in that function!!!

 CAUTION:

Since dynamically allocated memory isn’t “freed” automatically at
the end of the function within which it’s declared

We (the programmers) have to free this memory!! :-O

Program Memory

Data Memory

main
called and standard

functions

global
program

heap
system
stack

Memory

program memory - used for main
and all called functions

data memory - used for
global data,
constants, local
definitions and
dynamic memory.

The heap memory is unused
memory allocated to the
program and available to be
assigned during execution.

Since multiple copies of a function may
be active at one time (recursion)
the multiple copies of the variables
are maintained on the stack.

Each called function must only be in memory while
it or any of its called functions are active.

Obviously, main must be in memory at all times.

Dynamically Allocated Memory in C

 Four memory management functions are used
with dynamic memory in the C language.
 malloc, calloc, and realloc are used for memory

allocation.
 free is used to return allocated memory to the system

when it is no longer needed.

 All the memory management functions are found
in the standard library header file <stdlib.h>.

memory management

malloc calloc realloc free

 There are two functions we will typically use
to allocate memory dynamically:
 malloc

 calloc

Memory Management Functions

Memory Management Functions

 malloc

 Formal Description:
// Allocates unused space for an object

// whose size in bytes is specified by size

// and whose value is unspecified, and

// returns a pointer to the beginning of the

// memory allocated. If the memory can’t be

// found, NULL is returned.

void *malloc(size_t size);

Memory Management Functions

 calloc

 Formal Description:
 // Allocates an array of size nelem with

 // each element of size elsize, and returns

 // a pointer to the beginning of the memory

 // allocated. The space shall be initialized

 // to all bits 0. If the memory can't be

 // found, NULL is returned.

 void *calloc(size_t nelem, size_t elsize);

Memory Management Functions

 malloc & calloc

 What’s the difference?

Both descriptions basically say that you need to tell the
function how many bytes to allocated

– How you specify this to the two functions is different

Then, if the function successfully finds the memory
– A pointer to the beginning of the block of memory is returned

If unsuccessful
– NULL is returned

Dynamically Allocated Memory in C

 An example:

 #include <stdio.h>

#include <stdlib.h>

int main() {

 // declare 2 pointers

 int *A, *B;

 // allocate memory for the pointers

 A = (int *)malloc(sizeof(int));

 B = (int *)malloc(sizeof(int));

 // Store the int 5 where A is pointing to

 *A = 5;

 // Store the int 17 where B is pointing to

 *B = 17;

}

A:

B:

5

17

Question & Answer Time
#include <stdio.h>

#include <stdlib.h>

int main() {

 // declare 2 pointers

 int *A, *B;

 // allocate memory for the pointers

 A = (int *)malloc(sizeof(int));

 B = (int *)malloc(sizeof(int));

 // Store 5 where A is pointing to

 *A = 5;

 // Store 17 where B is pointing to

 *B = 17;

}

 In C an int and a pointer to an int are different types.
 And there’s no automatic conversion to change the right side to a

pointer
 The C compiler won’t compile the program, since this is a “type

mismatch error”

B = 17;

Question & Answer Time
#include <stdio.h>

#include <stdlib.h>

int main() {

 // declare 2 pointers

 int *A, *B;

 // allocate memory for the pointers

 A = (int *)malloc(sizeof(int));

 B = (int *)malloc(sizeof(int));

 // Store 5 where A is pointing to

 *A = 5;

 // Store 17 where B is pointing to

 *B = 17;

 printf(“B = 0x%x”, B);

} printf(“*B = %d, *B);

 Suppose you try to print the value of the pointer stored in B?
 C permits pointer values to be printed.
 The printf statement prints an answer such as B == 0xf6da,

(this is hexadecimal since %x prints values in hex.)

B is the memory address of the
int stored there.

Question and Answer Time

 So what is a pointer?

 A memory address!

Question and Answer Time

 Starting with the situation above,

 which of the following diagrams results if we
perform the assignment: A = B; ?

A:

B:

5

17

A:

B:

17

17

A:

B:

5

17

Left Diagram Right Diagram

Question and Answer Time

 Starting with the situation above,
 What assignment statement would we perform if we

wanted to create the situation shown in the left
diagram?
 *A = *B

A:

B:

5

17

A:

B:

17

17

Left Diagram

Dynamically Allocated Memory in C

 Another Example: Dynamically Allocated Arrays

 Sometimes you won’t know how big of an array you will
need for a program until run-time

We can’t do this:

int inputArray[?];

int inputArray = {?, ?, ?, ?, …};

 So you dynamically allocate space for the array

Using a pointer at runtime

int size;

scanf(“%d”, &size);

int *inputArray = (int*)malloc(size*sizeof(int));

Dynamically Allocated Memory in C

 Consider the following program:
Simply reads from a file of numbers (integers)

Assume that the first integer in the file stores how many
integers are in the rest of the file

What does the program do?
– Reads in all the values into the dynamically allocated array

– and prints them out in reverse order

Let’s say the program reads in a 10
– Meaning, there will be 10 integers that we need to read in

– So we will allocate space for those ten integers, read them in, and
then print them in reverse order

If our ten integers are: 4 2 3 1 5 3 2 9 3 7

Our program should print: 7 3 9 2 3 5 1 3 2 4

#include <stdio.h>

#include <stdlib.h>

int main() {

 int *p, i;

 FILE *fp;

 // Open the input file.

 fp = fopen(“input.txt”, “r”);

 // First int read shows how many numbers

 fscanf(fp, “%d”, &size);

 // Make memory and read numbers into array.

 p = (int *)malloc(size*sizeof(int));

 for (i = 0; i<size; i++)

 fscanf(fp, “%d”, &p[i]);

 // Print out the array elements backwards.

 for (i = size-1; i>=0; i--)

 printf(“%d\n”, p[i]);

 // Close the file and free memory.

 free(p);

 fclose(fp);

 return 0;

}

Note the parameters

passed to malloc

We must specify the

total # of bytes we need

for the array:

 Which is the product

of the # of array

elements AND the size

(in bytes) of each array

element.

Dynamically Allocated Memory in C

 Using calloc instead of malloc
We used: p = (int *)malloc(size*sizeof(int));

We could have done :
– p = (int *)calloc(size, sizeof(int));

But for this example there was no need to initialize the whole
block of memory to 0

– Which is the benefit of calloc

So when you want to initialize all the memory locations to 0
– calloc is the right choice since it does it for you

– Thanks calloc!

Dynamically Allocated Memory in C

 Extra notes on pointers and dynamic arrays
 The return type of malloc is void*
This means that the return type for malloc MUST be

casted
– To what?

» To the type of pointer that will be pointing to the
allocated memory.

What is the reason?
– malloc is used to allocate memory for all types of

structures

– If malloc only returned an int *, for example, then we
couldn’t use it to allocate space for a character array

So malloc simply returns a memory location
– it doesn’t specify what will be stored there.

Dynamically Allocated Memory in C

 Extra notes on pointers and dynamic arrays
 The return type of malloc is void*
Example:

– You want to create an array that is 800 bytes long

– How many cells are in that array?

– Well, it depends on what “size” each cell will be

– If you want an array integers, which are 4 bytes each, then you
will have 200 cells (800 total bytes / 4 bytes)

– But if you want an array of doubles, which are 8 bytes each,
then you will have 100 cells (800 total bytes / 8 bytes)

– So again, when you malloc your space, you need to “cast”
that space to whatever type you want (int, float, double, etc)

– That then determines how many chunks (and what size) the
allocated memory is broken into.

Dynamically Allocated Memory in C

 Extra notes on pointers and dynamic arrays
 malloc can fail to find the needed memory

within the heap
 If this occurs, malloc returns NULL

 Good programming should check for this after each
malloc call

 Rare… but:
The potential is there if you do not free memory when

possible

When you are done using a dynamic data structure
– Use the free function to free that memory!

Dynamically Allocated Memory in C
 realloc

 Sometimes an array gets filled
 but you want to “extend” it because more elements must be

stored.
 Based on dynamic memory allocation this could be solved by:

1) Allocate new memory larger than the old memory.
2) Copy over all the values from the old memory to the new.
3) Free the old memory.
4) Now we can add new values to the new memory.

 Can avoid extra work through a function that does it for us:
realloc
 void *realloc(void *ptr, size_t size);

 However, the steps above still happen behind the scenes, so is not used
often because it is inefficient.
 5 11 76 2 35

5 11 76 2 35

Dynamically Allocated Memory in C

 Short example of realloc …

Dynamically Allocated Memory in C
#define EXTRA 10

int main() {

 int numVals;

 srand(time(0));

 printf("How many numbers do you want to pick?\n");

 scanf("%d", &numVals);

 int* values = (int*)malloc(numVals*sizeof(int));

 int i;

 for (i=0; i<numVals; i++)

 values[i] = rand()%100;

 values = (int*)realloc(values,(numVals+EXTRA)*sizeof(int));

 for (i=0; i<EXTRA; i++)

 values[i+numVals] = rand()%100;

 numVals += EXTRA;

 for (i=0; i<numVals; i++)

 printf("%d ", values[i]);

 printf("\n");

 free(values);

 return 0;

}

Now let’s just say we

now want 10 extra

random numbers.

realloc example

Dynamically Allocated Memory in C

 How to create a dynamically allocated array in
a function

 The key idea is very similar to doing this task in
main, but you have to return a pointer to the array
created.

 Program shown in class …

Dynamically Allocated Memory in C
#include <stdio.h>

#include <stdlib.h>

int* readArray(FILE* fp, int size) {

 int* p = (int *)malloc(size*sizeof(int));

 int i = 0;

 for (i = 0; i<size; i++)

 fscanf(fp, "%d", &p[i]);

 return p;

}

int main() {

 FILE *fp;

 fp = fopen("input.txt", "r");

 int i, size;

 fscanf(fp, "%d", &size);

 int* numbers = readArray(fp, size);

 for (i = 0; i < size; i++)

 printf("%d ", numbers[i]);

 return 0;

}

p: 5 10 15 20 25 numbers:

Dynamically Allocated Memory in C

 How to create a dynamically allocated
structure in a function

 AGAIN, the key idea is very similar to doing this
task in main, but you have to return a pointer to
the structure created.

 Program shown in class …

Dynamically Allocated Memory in C

 Also shown in class,

 How to create a dynamically allocated array of
structs from a function

 How to create a dynamically allocated array of
pointers to structs

