
Jeopardy 

COP 3502 



BSTs & AVL Trees – Q1 
 Why would you use an AVL tree versus a Binary 

Search Tree? 

 Faster Search/Insert/Delete in a balanced tree 
versus an unbalanced tree. 

 In a balanced tree the Run-time of 
Search/Insert/Delete is O(log n) 

but if a branch becomes deep the Run-time approaches 
O(n). 



BSTs & AVL Trees – Q2 
 Show the state of the AVL tree after deleting 

node 48 and doing any necessary rebalancing: 



BSTs & AVL Trees – Q2 

 Show the state of the AVL tree after deleting node 
48 and doing any necessary rebalancing: 

20 

10 

4 

15 

18 

30 

31 

25 

29 

36 

43 

C 

B 

A 

C 

B 

A 

43 



BSTs & AVL Trees – Q2 
 Show the state of the AVL tree after deleting 

node 48 and doing any necessary rebalancing: 

20 

10 

4 

15 

18 

30 

31 

25 

29 

36 

43 

C 

B 

A 



BSTs & AVL Trees – Q3 

 What are the PreOrder, InOrder, and PostOrder 
traversals of the following Binary Tree? 

 

 

 

 

 

 

 PreOrder:  5,8,7,1,4,3,2,9,6 

 InOrder:  1,7,4,8,3,5,2,6,9 

 PostOrder:  1,4,7,3,8,6,9,2,5 

 

5 

8 

7 

4 

3 

2 

6 

9 

1 



BSTs & AVL Trees – Q4 

 What is the height 
of the following 
tree? 

 8 



BSTs & AVL Trees – Q5 

 Write a recursive function to free the memory in a 
Binary Tree: 

void FreeBST(node *root) { 

   if (root != NULL) { 

      FreeBST(root->left); 

      FreeBST(root->right); 

      free(root); 

   } 

} 



 What index would 8 be inserted into in the 
following hash table using Quadratic Probing 
with the hash function x2 + 7 % 13: 

 

 

 

 10 

Hash Tables & Heaps – Q1 

index 0 1 2 3 4 5 6 7 8 9 10 11 12 

val 3 0 1 2 



 What is the purpose of a hash table? 

 

 Very fast search, insert, and delete times:  O(1) 
with a perfect hash function. 

Hash Tables & Heaps – Q2 



 What are the two uses for Heaps given in 
class? 

 Priority Queues and Heap Sort. 

Hash Tables & Heaps – Q3 



 What is the resulting heap after Deleting the 
Minimum element from the following heap? 

Hash Tables & Heaps – Q4 



 What is the resulting heap after Deleting the 
Minimum element from the following heap? 

Hash Tables & Heaps – Q4 

P
e
r
c
o
l
a
t
e 



 What is the resulting heap after Deleting the 
Minimum element from the following heap? 

Hash Tables & Heaps – Q4 



 Using Big-O notation, what is the run-time of:  

 (a) Inserting 10 items into an initially empty binary 
heap  

 (b) Inserting 10 items into a binary heap with n 
elements. 

 

 O(1) 

 O(log n) 

Hash Tables & Heaps – Q5 



 Fill in the table to show the resulting array 
after each pass in Bubble Sort: 

Sorting – Q1 

Initial 4 2 6 5 7 1 8 3 

Sorted 1 2 3 4 5 6 7 8 



 Fill in the table to show the resulting array 
after each pass in Bubble Sort: 

Sorting – Q1 

Initial 4 2 6 5 7 1 8 3 
2 4 5 6 1 7 3 8 

2 4 5 1 6 3 7 

2 4 1 5 3 6 

2 1 4 3 5 

1 2 3 4 

Sorted 1 2 3 4 5 6 7 8 



 Show the result of running Partition on the array 
below using the leftmost element as the pivot 
element.  Show the array after each swap. 

Sorting – Q2 

Initial 4 2 6 5 7 1 8 3 
Swap1 
Swap2 
Partitioned 



 Show the result of running Partition on the array 
below using the leftmost element as the pivot 
element.  Show the array after each swap. 

Sorting – Q2 

Initial 4 2 6 5 7 1 8 3 
Swap1 4 2 3 6 
Swap2 4 2 3 1 7 5 8 6 
Partitioned 1 2 3 4 7 5 8 6 



 Fill in the table to show the array after each call 
to the Merge function in Merge Sort.  

Sorting – Q3 

Initial 5 2 6 4 7 1 8 3 

Sorted 1 2 3 4 5 6 7 8 



 Fill in the table to show the array after each call 
to the Merge function in Merge Sort.  

Sorting – Q3 

Initial 5 2 6 4 7 1 8 3 
2 5 6 4 7 1 8 3 
2 5 4 6 7 1 8 3 
2 4 5 6 7 1 8 3 
2 4 5 6 1 7 8 3 
2 4 5 6 1 7 3 8 
2 4 5 6 1 3 7 8 

Sorted 1 2 3 4 5 6 7 8 



 What is the Worst Case run-time of Insertion 
Sort, Selection Sort, and Bubble Sort 
respectively? 

 What is the Best Case of each? 

 O(n2) , O(n2), O(n2) 

 O(n) , O(n2) , O(n2) 

 

 

Sorting – Q4 



 What is the Best Case and Worst Case for 
finding the kth smallest integer out of an 
unsorted array of n integers. (k <= n) 

 

 Best Case:  O(n) , Worst Case:  O(n2) 

 

 

 

Sorting – Q5 



 What is the acronym for describing the push 
and pop rules for Stacks and what does it stand 
for? 

 

 LIFO – Last In, First Out. 

 

 

 

Stacks & Queues – Q1 



 Show the final contents of the Array-Implemented 
Queue, the index of front, and numElements – after 
running this code: 

 
 

 

 

Stacks & Queues – Q2 



 Show the final contents of the Array-Implemented 
Queue, the index of front, and numElements – after 
running this code: 

 
 

 

 

Stacks & Queues – Q2 

3 8 6 7 9 

FRONT: 
 
NUMELEMENTS: 

-1 

0 

0 

1 2 3 

1 2 



 What two implementations of Queue’s were used in 
HW #4?  What was each one used for? 

 

 Array implementation – Router 

 Linked List implementation – each device’s request 
queue. 

 

 

Stacks & Queues – Q3 



 What are the run-times of the following operations: 

 Stacks: Push and Pop 

 Queues:  Enqueue  and Dequeue 

 

 O(1) for all 

 

 

Stacks & Queues – Q4 



 Convert the following infix expression to postfix: 

 ( A / ( B – C ) + D ) * ( E – F ) + G * H 

 

 A  B  C –  /  D  +  E  F  –   *  G  H  *  + 

Stacks & Queues – Q5 



Algorithm Analysis – Q1 

 What is the Big-O run-time of deleting one 
node from an AVL tree with n nodes? 

 What is the Big-O run-time of deleting one 
node from an AVL tree with height h? 

 

 O(log n) and O(h) 



Algorithm Analysis – Q2 

 What is the Big-O solution to the following 
recurrence relation? 

 T(n) = 2T(n/2) + n, assume T(1) = 1 

 

 O(n log n) 



Algorithm Analysis – Q3 

 Determine a simplified closed-form solution 
for the following summation in terms of n: 



Algorithm Analysis – Q3 

 Determine a 
simplified 
closed-form 
solution for 
the following 
summation in 
terms of n: 



Algorithm Analysis – Q4 

 What is the Big-O running time of the 
following segment of code, it terms of n. 

int a = 1, b = n, sum = 0; 

while (a < b) { 

 sum++; 

 a = a*2; 

 b = b/2; 

} 



Algorithm Analysis – Q4 
 What is the Big-O running time of the following 

segment of code, it terms of n. 
 
 
 
 
 

 Consider the ratio b/a. 
 The loop stops when this ration is 1.  For each loop 

iteration the ratio decreases by a factor of 4.  Let k 
be the number of loop iterations total.  Then 1 = 
n/4k.  Solving we get k = log4n.  O(log n) 

int a = 1, b = n, sum = 0; 

while (a < b) { 

 sum++; 

 a = a*2; 

 b = b/2; 

} 



Algorithm Analysis – Q5 
 If an O(n2) algorithm takes 40 ms to complete with 

an input size of n = 20,000, how much time will it 
take to complete on an input size of n = 50,000? 

 

 c * n2 = 40ms, c = 40/20,0002 = 40 / 400,000 
 

 40 / 400,000 * (50,0002) = 40 / 400,000 * (2,500,000)  


                                                                       = 10 * 25 =  250 ms 

 

 

 



Mixed Bag – Q1 

 Fill in the blanks of the following recursive 
sorting function, which of the sorting algorithms 
that we have seen so far does this resemble?: 

 

 

 

void sort(int *values, int length) { 

  if (length > 1) { 

    int maxIndex = 0; 

    int i; 

    for (i=1; i<length; i++) 

      if ( ________(1)________ ) 

        maxIndex = i ; 

    int temp = values[length-1]; 

    values[length-1] = ____(2)___ ; 

    ________(3)_______ = temp ; 

    ______________(4)____________ ; 

}  



Mixed Bag – Q1 
 Fill in the blanks of the following recursive 

sorting function, which of the sorting algorithms 
that we have seen so far does this resemble? 
 Selection sort. 

 

 

 

void sort(int *values, int length) { 

  if (length > 1) { 

    int maxIndex = 0; 

    int i; 

    for (i=1; i<length; i++) 

      if ( values[i] > values[maxIndex] ) 

        maxIndex = i ; 

    int temp = values[length-1]; 

    values[length-1] = values[maxIndex]; 

    values[maxIndex] = temp ; 

    sort(values, length – 1); 

}  



Mixed Bag – Q2 
 In a binary search of the array below, which 

elements in the array are checked (and in what 
order) when a search is conducted for the 
number 17? 

 

 

 

 47, 9, 22 

Index 0 1 2 3 4 5 6 7 8 

Value 2 9 22 25 47 59 61 66 93 



Mixed Bag – Q3 
 Briefly explain what the function does AND what 

its return value means.  (Using the typical tree 
node struct) 
int mystery(struct node *root) { 

    int retVal; 

    if(root == NULL) 

        return 0; 

    retVal = mystery(root->left) +  

             mystery(root->right); 

    if(root->data % 2 == 1) { 

        root->data -= 1; 

        retVal ++; 

    } 

    return retVal; 

} 



Mixed Bag – Q3 
 • The function 

subtracts 1 
from all nodes 
containing odd 
values 

 • The function 
returns the 
number of 
nodes altered 
by the function 
(# of odd 
nodes) 

int mystery(struct node *root) { 

    int retVal; 

    if(root == NULL) 

        return 0; 

    retVal = mystery(root->left) +  

             mystery(root->right); 

    if(root->data % 2 == 1) { 

        root->data -= 1; 

        retVal ++; 

    } 

    return retVal; 

} 



Mixed Bag – Q4 
 Imagine using a linked list of digits to store an integer. For example, a list 

containing 3, 6, 2, and 1, in that order stores the number 3621. Write an 
iterative function which accepts a linear linked list num that stores a number in 
this fashion and returns the value of the number. You may assume the list 
stores digits only and contains 9 or fewer nodes. 

struct node{ 

    int data; 

    struct node *next; 

}; 

 

int getValue(struct node* num) { 

 

    // Fill in code 

 

} 



Mixed Bag – Q4 

 Imagine using a linked list of digits to store an integer. For 
example, a list containing 3, 6, 2, and 1, in that order stores the 
number 3621. Write an iterative function which accepts a 
linear linked list num that stores a number in this fashion and 
returns the value of the number.  

int getValue(struct node* num) { 

    int sum = 0; 

 

    while (num != NULL) { 

        sum = 10*sum + num->data; 

        num = num->next; 

    } 

 

    return sum; 

} 



Mixed Bag – Q5 
 What is the Big-O running time of the following 

segment of code, in terms of n. 

 

 

 

 

 

 The inner loop will run 0+2+4+…+ n times 

 Since we know 0+1+2+3+…+n = n(n+1)/2 = O(n2) 

 We would have about ½ of O(n2)  = O(n2) 

int i; 

for (i=0; i<n; i+=2) { 

 for (j=i; j>0; j--)  

  printf(“%d”, j); 

 printf(“\n”); 

} 


