<
SUCF
JEOPARDY

COP 3502

BSTs & AVL Trees — Q1

Why would you use an AVL tree versus a Binary
Search Tree?

Faster Search/Insert/Delete in a balanced tree
versus an unbalanced tree.

In a balanced tree the Run-time of
Search/Insert/Delete is O(log n)

but if a branch becomes deep the Run-time approaches
O(n).

&

BSTs & AVL Trees — Q2

Show the state of the AVL tree after deleting
node 48 and doing any necessary rebalancing:

%

BSTs & AVL Trees — Q2

Show the state of the AVL tree after deleting node
48 and doing any necessary rebalancing:

BSTs & AVL Trees — Q2

Show the state of the AVL tree after deleting
node 48 and doing any necessary rebalancing:

BSTs & AVL Trees — Q3

What are the PreOrder, InOrder, and PostOrder
traversals of the following Binary Tree?

PreOrder: 5,8,7,1,4,3,2,9,6
nOrder: 1,7,4,8,3,5,2,6,9
PostOrder: 1,4,7,3,8,6,9,2,5

BSTs & AVL Trees — Q4

" What is the height Q
S:e’ceh?e following Q e
; oo
00 @
® &E
()
(=)
(1)

BSTs & AVL Trees — Q5

Write a recursive function to free the memory in a
Binary Tree:

void FreeBST (node *root) {
if (root != NULL) {

FreeBST (root->left) ;

FreeBST (root->right) ;

free (root) ;

Hash Tables & Heaps — Q1

What index would 8 be inserted into in the
following hash table using Quadratic Probing
with the hash function x2 + 7 % 13:

index | O 1 2 3 4 S 6 7 8 9 10 |11 12

val 3 0 1 2

10

Hash Tables & Heaps — Q2

What is the purpose of a hash table?

Very fast search, insert, and delete times: O(1)
with a perfect hash function.

Hash Tables & Heaps — Q3

What are the two uses for Heaps given in
class?

Priority Queues and Heap Sort.

Hash Tables & Heaps — Q4

What is the resulting heap after Deleting the
Minimum element from the following heap?

%

Hash Tables & Heaps — Q4

What is the resulting heap after Deleting the
Minimum element from the following heap?

-+ 0 =— 0 O = M TV

%
<

Hash Tables & Heaps — Q4

What is the resulting heap after Deleting the
Minimum element from the following heap?

%

Hash Tables & Heaps — Q5

Using Big-O notation, what is the run-time of:
(a) Inserting 10 items into an initially empty binary
heap

(b) Inserting 10 items into a binary heap with n
elements.

0(1)
O(log n)

Sorting - Q1

Fill in the table to show the resulting array
after each pass in Bubble Sort:

Initial |4 2 6 5 V4 1 8

Sorted |1 2 3 4 5 6 {

%

Sorting - Q1

Fill in the table to show the resulting array
after each pass in Bubble Sort:

Initial |4 2 6 5 { 1 8 3
2 4 5 6 1 7 3 8
2 4 5 1 6 3 {
2 4 1 5 3 6
2 1 4 3 5
1 2 3 4

Sorted |1 2 3 4 5 6 / 8

/-

Sorting - Q2

Show the result of running Partition on the array
below using the leftmost element as the pivot
element. Show the array after each swap.

Initial 4 2 6 5 / 1 8

Swapl

Swap2

Partitioned

%

Sorting - Q2

Show the result of running Partition on the array

below using the leftmost element as the pivot

element. Show the array after each swap.

Initial 4 12 |6 |5 |7 (1 |8 |3
Swapl 4 |2 |3 6
Swap2 4 12 |3 |1 |7 |5 (8 |6
Partitioned |1 |2 |3 (4 |7 |5 |8 |6

%

Sorting - Q3

Fill in the table to show the array after each call
to the Merge function in Merge Sort.

Initial |5 |2 |6 (4 |7 |1 |8 |3

S WIEeEl{EIE (2 13T 4 [5G 1S

%

Sorting - Q3

Fill in the table to show the array after each call
to the Merge function in Merge Sort.

Initial

= INN (NN N[N ol
N PP OTO0T N
wlojoa|lo|bs oo
Nlojoo|o|o|/ s
SIS TN ENI ENIENIEN
O|WNNR (P[P~
~J|~J|w|oo|co|0o |00 |0
Co|0o | |wW|w|wW|w|w

Sorted

%

Sorting - Q4

What is the Worst Case run-time of Insertion
Sort, Selection Sort, and Bubble Sort
respectively?
What is the Best Case of each?

O(n?), O(n?), O(n?)

O(n), O(n?), O(n?)

Sorting - Q5

What is the Best Case and Worst Case for
finding the kth smallest integer out of an
unsorted array of n integers. (k <= n)

Best Case: O(n), Worst Case: O(n?)

Stacks & Queues — Q1

What is the acronym for describing the push
and pop rules for Stacks and what does it stand
for?

LIFO — Last In, First Out.

Stacks & Queues — Q2

* Show the final contents of the Array-Implemented
Queue, the index of front, and numElements — after
running this code:

enqueue (Q1, 8);
enqueue (Q1, 3);
dequeue (Q1) ;

enqueue (Q1l, 6);
enqueue (Q1, 7);
dequeue (Q1) ;

enqueue (Q1, 9);

QI: elements:

front:
numElements:

%

Stacks & Queues - Q2

* Show the final contents of the Array-Implemented
Queue, the index of front, and numElements — after
running this code:

== enqueue (Q1, 8);
== cenqueue (Q1l, 3); FRONT: -1 012
mmms) dequeue (Q1) ;

) enqueue (Ql, 6); NUMELEMENTS: 0 12 3
s cnqueue (Q1, 7):;

== dequeue (Q1) ;
== enqueue (Q1, 9):

Ql: elements:
8 3 6 7 9

™

@

Stacks & Queues — Q3

What two implementations of Queue’s were used in
HW #4? What was each one used for?

Array implementation — Router

Linked List implementation — each device’s request
gueue.

Stacks & Queues — Q4

What are the run-times of the following operations:
Stacks: Push and Pop
Queues: Enqueue and Dequeue

O(1) for all

Stacks & Queues — Q5

Convert the following infix expression to postfix:
(A/(B-C)+D)*(E-F)+G*H

ABC-/D+EF- *GH*+

Algorithm Analysis — Q1

What is the Big-O run-time of deleting one
node from an AVL tree with n nodes?

What is the Big-O run-time of deleting one
node from an AVL tree with height h?

O(log n) and O(h)

Algorithm Analysis — Q2

What is the Big-O solution to the following
recurrence relation?

T(n) = 2T(n/2) + n, assume T(1) = 1

O(n log n)

Algorithm Analysis — Q3

Determine a simplified closed-form solution
for the following summation in terms of n:

3n Sn

> > (5i+3))

=1 j=n+l

Algorithm Analysis - Q3

Determine a
simplified
closed-form
solution for
the following
summation in
terms of n:

3n Sn

> > (5i+3))

i=l j=n+l

3n S5n 3n Sn

z D5i+Y > 3

1 j=n+l i=l j=n+l

3n 3n Sn

24}?*51+Z Z 3

j=n+l

In Sn

4n*53n(Gn+1)/2)+ > > 3)

i=1 j=n+l

3n Sn

901> + 30n° +Z(Z 3j— 23;)

3n
900n° +30n° + 2(3(5;1)(25;? +1) 31?(;/32+ h

90n° +30n" +3n(36n" + 6n)
198n° + 48n°

)

Algorithm Analysis — Q4

What is the Big-O running time of the

following segment of code, it terms of n.

Algorithm Analysis — Q4

What is the Big-O running time of the following
segment of code, it terms of n.

int a=1, b=n, sum = 0;
while (a < b) {

Consider the ratio b/a.

The loop stops when this ration is 1. For each loop
iteration the ratio decreases by a factor of 4. Let k
be the number of loop iterations total. Then 1 =
n/4¥. Solving we get k = log,n. = O(log n) @

Algorithm Analysis — Q5

If an O(n?) algorithm takes 40 ms to complete with
an input size of n = 20,000, how much time will it
take to complete on an input size of n = 50,0007

¢ * n? =40ms, ¢ = 40/20,000% = 40 / 400,000

40 / 400,000 * (50,000%) = 40 / 400,000 * (2,500,000)
=10 * 25 = 250 ms

&

Mixed Bag - Q1

Fill in the blanks of the following recursive
sorting function, which of the sorting algorithms
that we have seen so far does this resemble?:

void sort(int *wvalues, int length) ({
if (length > 1) {
int maxIndex = 0;
int 1i;
for (i=1; i<length; i++)
if (@9))

maxIndex = 1 ;
int temp = values[length-1];
values[length-1] = (2) ;
(3) = temp ;
(€]

Mixed Bag - Q1

Fill in the blanks of the following recursive
sorting function, which of the sorting algorithms
that we have seen so far does this resemble?

Selection sort.

void sort(int *wvalues, int length) ({
if (length > 1) {
int maxIndex =
int 1i;
for (i=1; i<length; i++)
if (values[i] > values[maxIndex])

maxIndex = 1 ;
int temp = values[length-1];
values[length-1] = values[maxIndex];
values [maxIndex] = temp ;

sort (values, length - 1);

Mixed Bag — Q2

In a binary search of the array below, which
elements in the array are checked (and in what
order) when a search is conducted for the

number 177?

Index [0 1 2 3 4 5 6 7 8
Value |2 9 22 |25 |47 (59 |(61 |66 |93

47,9, 22

%

Mixed Bag - Q3

Briefly explain what the function does AND what

its return value means. (Using the typical tree
node struct)

int mystery(struct node *root) ({
int retval;

i1f (root == NULL)
return O;
retVal = mystery(root->left) +

mystery (root->right) ;
if (root->data $ 2 == 1) {
root->data -= 1;
retVal ++;
}

return retVal;

Mixed Bag - Q3

e The function

subtracts 1

from all nodes

QoI f-fele ¢l int mystery(struct node *root) {

values int retval;

e The function 1f (root == NULL)

returns the return 0;

number of retVal = mystery(root->left) +
nodes altered mystery (root->right);
by the function if (root->data % 2 == 1) {

(# of odd root->data -= 1;

nodes) } retvVal ++;

return retVal;

Mixed Bag — Q4

Imagine using a linked list of digits to store an integer. For example, a list
containing 3, 6, 2, and 1, in that order stores the number 3621. Write an
iterative function which accepts a linear linked list num that stores a number in
this fashion and returns the value of the number. You may assume the list
stores digits only and contains 9 or fewer nodes.

struct node({
int data;
struct node *next;

};

int getValue (struct node* num) ({

// Fill in code

Mixed Bag - Q4

Imagine using a linked list of digits to store an integer. For
example, a list containing 3, 6, 2, and 1, in that order stores the
number 3621. Write an iterative function which accepts a
linear linked list num that stores a number in this fashion and
returns the value of the number.

int getValue (struct node* num) ({
int sum = 0;

while (num '!'= NULL) {
sum = 10*sum + num->data;
num = num->next;

}

return sum;

Mixed Bag — Q5

What is the Big-O running time of the following
segment of code, in terms of n.

int 1i;
for (1=0; i<n; i+=2) {
for (j=i; 3>0; j--)

printf (“sd”, j);
printf (“\n”) ;

The inner loop will run 0+2+4+...+ n times
Since we know 0+1+2+3+...+n = n(n+1)/2 = O(n?)
We would have about % of O(n?) = O(n?) &

