
Graphs

COP 3502

Graphs
 Train Lines

Gainesville

Ocala Deltona

Daytona

Melbourne

Lakeland

Tampa

Orlando

Graphs
 Southwest Flights in FL

Tpa

Jax

WPB

Orl

Naples

Pan

FTL

Graphs
 Definition

◦ A Graph G, is a

◦ a set of vertices, V

◦ AND

◦ a set of edges, E

◦ where each edge is associated
with a pair of vertices.

 We write: G = (V, E)

Vertex set V = {1, 2, 3, 4, 5, 6}

Edge set E = {{1,2}, {1,5}, {2,3},

 {2,5}, {3,4}, {4,5}, {4,6}}.

Graphs
 Undirected vs

Directed

 The following graph is
UNDIRECTED

 There is an edge
between vertices 4
and 6, but there is no
direction.

Vertex set V = {1, 2, 3, 4, 5, 6}

Edge set E = {{1,2}, {1,5}, {2,3},

 {2,5}, {3,4}, {4,5}, {4,6}}.

Graphs

 Directed Graph:

◦ Same as before, but where
each edge is associated
with an ordered pair of
vertices.

◦ Note: This graph does not
have the edge (11,5), but it
does have (5,11)

A labeled simple graph:
Vertex set V = {2,3,5,7,8,9,10,11}

Edge set E = {{3,8}, {3,10}, {5,11}, {7,8},
{7,11}, {8,9}, {11,2},{11,9},{11,10}}.

Graphs

 Subgraph

 Basically, to be a
subgraph, all of the
edges and vertices must
be in the original graph.

 Just a subset of the
vertices and edges

Graphs

 Simple Path

 A path such that all vertices are distinct, except
that the first and the last could be the same.

Simple Path – S T U V

S

V

T

U

Graphs

 Cycle

 A cycle is a path that starts and ends at the same
point. For an undirected graph (such as below)
the edges are distinct.

S T U S is a cycle

S

V

T

U

Graphs

 Connected vs Unconnected

 A connected graph is one where any pair of vertices in
the graph is connected by at least one path.

S

V

T

U

S

V

T

U

Graphs

Weighted Graph:

◦ Same as above, but where
each edge also has an
associated real number
with it, known as the edge
weight.
◦ Can be directed or

undirected.

A labeled weighted graph:
Vertex set V = {1,2,3,4,5}

Graphs

 Graph Storage

 Adjacency Matrix

 Adjacency List

Graph – Adjacency Matrix

 Assume there are N vertices in a graph

 Then you need an NxN matrix

 A[0…N-1][0…N-1]

 If vertex i and vertex j have an edge between
them, A[i][j] = 1;

 Otherwise, A[i][j] = 0

Note a vertex can have an edge back to itself (shown as
a loop) where A[i][i] = 1, otherwise A[i][i] = 0

Adjacency Matrix - Undirected

S T U V

S 1 1 1 1

T 1 0 1 0

U 1 1 0 1

V 1 0 1 0

S

V

T

U

S T U V

S

T

U

V

 Since this is an undirected graph, the adjacency
matrix is symmetric

 A directed graph may not have a symmetric
adjacency matrix.

Adjacency Matrix - Directed

S T U V

S 1 1 1 1

T 0 0 0 0

U 0 1 0 0

V 0 0 1 0

S

V

T

U

S T U V

S

T

U

V

 A directed graph may not have a symmetric
adjacency matrix.

 Note in this matrix the start is the row, and the
end is the column.

Adjacency Matrix - Weighted

S T U V

S 1 1 1 1

T 1 0 1 0

U 1 1 0 1

V 1 0 1 0

S

V

T

U

S T U V

S

T

U

V

 Since this is an undirected graph, the adjacency
matrix is symmetric

 A directed graph may not have a symmetric
adjacency matrix.

Graph – Adjacency List

 An array of linked lists

 Where Array[i] holds the list of vertices that are
adjacent to vertex i

0

3

1

2

0__ 1__ 2__ 3 X

1_X

2_X

0

1

2

3

Graph – Adjacency List
 Weighted Graph

 Adjacency List - array of linked lists

Where Array[i] holds the list of vertices that are
adjacent to vertex i

0

3

1

2

0 8_ 0

1

2

3

10

5

15

4

8

12

1 10 2 5 3 4 X

1 12 X

2 15 X

Graph Traversals

 Depth First Search

 Breadth First Search

Graph Traversals

 Depth First Search
 The general "rule" used in searching a graph using a depth first search is to

search down a path from a particular source vertex as far as you can go.
 When you can go to farther, "backtrack" to the last vertex from which a

different path could have been taken.
 Continue in this fashion, attempting to go as deep as possible down each path

until each node has been visited.

 S

V

T

U

W

R

What is the DFS Traversal of the following
Graph starting from S? When you have a
choice between which vertex to search next
choose alphabetically.

S

U

T W

S U T W V V

R

R

Depth First Search

 The general "rule" used in searching a graph using a
depth first search is to search down a path from a
particular source vertex as far as you can go.
 When you can go to farther, "backtrack" to the last vertex

from which a different path could have been taken.
 Continue in this fashion, attempting to go as deep as

possible down each path until each node has been visited.

 The most difficult part of this algorithm is keeping track

of what nodes have already been visited, so that the
algorithm does not run ad infinitum. We can do this by
labeling each visited node.

Graph Traversals

 Breadth First Search
 The idea in a breadth first search is opposite to a depth first search. Instead of

searching down a single path until you can go no longer, you search all paths at an
uniform depth from the source before moving onto deeper paths.
 Once again, we'll need to mark both edges and vertices based on what has been

visited.

S

V

T

U

W

R

What is the BFS Traversal of the following
Graph starting from S? When you have a
choice between which vertex to search next
choose alphabetically.

S

U

T W

S U T W V V

R

R

Breadth First Search

 Instead of searching down a single path until you can
go no longer, you search all paths at an uniform depth
from the source before moving onto deeper paths.
Once again, we'll need to mark both edges and vertices
based on what has been visited.

 In essence, we only want to explore one "unit" away
from a searched node before we move to a different
node to search from. All in all, we will be adding nodes
to the back of a queue to be ones to searched from in
the future.

Depth First Search

 Start with 1
 2,4,3

 Stop at 3

 Backtrack to 4, can we search?
 7,6

 Stop at 2

 Backtrack to 6, can we search?
 10,13

 Stop at 13

1 2 5

10 6

11 15

3 4 7 12 9

13

14

8

 Backtrack to 10,6,7
 9, 11, 8, 5

 Stop at 5

 Backtrack to 8,11
 15,14,12

 STOP – All nodes are marked!!

Output

List:

1 2 4 3 7 6 10 13 9 11 8 5 15 14 12

1 2

3

5

6

11

4

10

15

7 9

8

12

13

14

Breadth First Search

 L0: 1
 L1: 2, 3
 L2: 4,5,6,11
 L3: 7,8,10,9,15
 L4: 13,12,14

1 2 5

10 6

11 15

3 4 7 12 9

13

14

1 2

3

5

6

11

4

8

10

15

7 9

8

12

13

14

Final output: 1, 2, 3, 4, 5, 6, 11, 7, 8, 10, 9, 15, 13, 12, 14

Breadth First Search

 The basic idea
 we have successive rounds and continue with our rounds

until no new vertices are visited on a round.
 For each round, we look at each vertex connected to the

vertex we came from.
 And from this vertex we look at all possible connected

vertices.

 This leaves no vertex unvisited
 because we continue to look for vertices until no new

ones of a particular length are found.
 If there are no paths of length 10 to a new vertex, surely

there can be no paths of length 11 to a new vertex.

 The algorithm also terminates since no path can be
longer than the number of vertices in the graph.

Directed Graphs
 Traversals

 Both of the traversals DFS and BFS are essentially
the same on a directed graph.

 When you run the algorithms, you must simply
pay attention to the direction of the edges.

 Furthermore, you must keep in mind that you will
only visit edges that are reachable from the
source vertex.

Graph Traversal – Application
 Mark and Sweep Algorithm for Garbage Collection

 A mark bit is associated with each object created in a Java
program.
 It indicates if the object is live or not.

 When the JVM notices that the memory heap is low, it
suspends all threads, and clears all mark bits.
To garbage collect, we go through each live stack of current threads

and mark all these objects as live.

Then we use a DFS to mark all objects reachable from these initial live
objects. (In particular each object is viewed as a vertex and each
reference as a directed edge.)

This completes marking all live objects.

– Then we scan through the memory heap freeing all space that has NOT
been marked.

Example Exam Questions

 What is the DFS and BFS
of the following Graph?

 What is the adjacency
matrix and adjacency
list of the following
Graph?

