
Graphs 

COP 3502 



Graphs 
 Train Lines 
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Graphs 
 Definition 

◦ A Graph G, is a 

◦ a set of vertices, V 

◦ AND 

◦ a set of edges, E 

◦ where each edge is associated 
with a pair of vertices. 

 We write:  G = (V, E) 

 

Vertex set V = {1, 2, 3, 4, 5, 6}  

 

Edge set E = {{1,2}, {1,5}, {2,3},      

                        {2,5}, {3,4}, {4,5}, {4,6}}. 

 



Graphs 
 Undirected vs 

Directed 

 The following graph is 
UNDIRECTED 

 There is an edge 
between vertices 4 
and 6, but there is no 
direction. 

Vertex set V = {1, 2, 3, 4, 5, 6}  

 

Edge set E = {{1,2}, {1,5}, {2,3},      

                        {2,5}, {3,4}, {4,5}, {4,6}}. 

 



Graphs 

 Directed Graph: 

◦ Same as before, but where 
each edge is associated 
with an ordered pair of 
vertices. 

 

◦ Note:  This graph does not 
have the edge (11,5), but it 
does have (5,11) 

 

A labeled simple graph: 
Vertex set V = {2,3,5,7,8,9,10,11}  

Edge set E = {{3,8}, {3,10}, {5,11}, {7,8}, 
{7,11}, {8,9}, {11,2},{11,9},{11,10}}. 

 



Graphs 

 Subgraph 

 Basically, to be a 
subgraph, all of the 
edges and vertices must 
be in the original graph. 

 

 Just a subset of the 
vertices and edges 



Graphs 

 Simple Path 

 A path such that all vertices are distinct, except 
that the first and the last could be the same. 

Simple Path – S T U V 
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Graphs 

 Cycle 

 A cycle is a path that starts and ends at the same 
point.  For an undirected graph (such as below) 
the edges are distinct. 

S T U S is a cycle 
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Graphs 

 Connected vs Unconnected 

 A connected graph is one where any pair of vertices in 
the graph is connected by at least one path.  
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Graphs 

Weighted Graph: 

◦ Same as above, but where 
each edge also has an 
associated real number 
with it, known as the edge 
weight. 
◦ Can be directed or 

undirected. 

 
A labeled weighted graph: 
Vertex set V = {1,2,3,4,5}  

 



Graphs 

 Graph Storage 

 Adjacency Matrix 

 Adjacency List 



Graph – Adjacency Matrix 

 Assume there are N vertices in a graph 

 Then you need an NxN matrix  

 A[0…N-1][0…N-1] 

 If vertex i and vertex j have an edge between 
them, A[i][j] = 1; 

 Otherwise, A[i][j] = 0 

Note a vertex can have an edge back to itself (shown as 
a loop) where A[i][i] = 1, otherwise A[i][i] = 0 



Adjacency Matrix - Undirected 

S T U V 

S 1 1 1 1 

T 1 0 1 0 

U 1 1 0 1 

V 1 0 1 0 
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 Since this is an undirected graph, the adjacency 
matrix is symmetric 

 A directed graph may not have a symmetric 
adjacency matrix. 



Adjacency Matrix - Directed 

S T U V 

S 1 1 1 1 

T 0 0 0 0 

U 0 1 0 0 

V 0 0 1 0 
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 A directed graph may not have a symmetric 
adjacency matrix. 

 Note in this matrix the start is the row, and the 
end is the column. 



Adjacency Matrix - Weighted 

S T U V 

S 1 1 1 1 

T 1 0 1 0 

U 1 1 0 1 

V 1 0 1 0 
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 Since this is an undirected graph, the adjacency 
matrix is symmetric 

 A directed graph may not have a symmetric 
adjacency matrix. 



Graph – Adjacency List 

 An array of linked lists 

 Where Array[i] holds the list of vertices that are 
adjacent to vertex i 
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Graph – Adjacency List 
 Weighted Graph 

 Adjacency List - array of linked lists 

Where Array[i] holds the list of vertices that are 
adjacent to vertex i 
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Graph Traversals 

 Depth First Search 

 Breadth First Search 



Graph Traversals 

 Depth First Search 
 The general "rule" used in searching a graph using a depth first search is to 

search down a path from a particular source vertex as far as you can go.  
 When you can go to farther, "backtrack" to the last vertex from which a 

different path could have been taken. 
 Continue in this fashion, attempting to go as deep as possible down each path 

until each node has been visited. 
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What is the DFS Traversal of the following 
Graph starting from S?  When you have a  
choice between which vertex to search next 
choose alphabetically. 
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Depth First Search 

 The general "rule" used in searching a graph using a 
depth first search is to search down a path from a 
particular source vertex as far as you can go.  
 When you can go to farther, "backtrack" to the last vertex 

from which a different path could have been taken. 
 Continue in this fashion, attempting to go as deep as 

possible down each path until each node has been visited. 

 
 The most difficult part of this algorithm is keeping track 

of what nodes have already been visited, so that the 
algorithm does not run ad infinitum. We can do this by 
labeling each visited node. 
 



Graph Traversals 

 Breadth First Search 
 The idea in a breadth first search is opposite to a depth first search. Instead of 

searching down a single path until you can go no longer, you search all paths at an 
uniform depth from the source before moving onto deeper paths.  
 Once again, we'll need to mark both edges and vertices based on what has been 

visited. 
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What is the BFS Traversal of the following 
Graph starting from S?  When you have a  
choice between which vertex to search next 
choose alphabetically. 
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Breadth First Search 

 Instead of searching down a single path until you can 
go no longer, you search all paths at an uniform depth 
from the source before moving onto deeper paths. 
Once again, we'll need to mark both edges and vertices 
based on what has been visited. 

 

 In essence, we only want to explore one "unit" away 
from a searched node before we move to a different 
node to search from. All in all, we will be adding nodes 
to the back of a queue to be ones to searched from in 
the future. 

 



Depth First Search 

 Start with 1 
 2,4,3 

 Stop at 3 

 Backtrack to 4, can we search? 
 7,6 

 Stop at 2 

 Backtrack to 6, can we search? 
 10,13 

 Stop at 13 
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 Backtrack to 10,6,7 
 9, 11, 8, 5 

 Stop at 5 

 Backtrack to 8,11 
 15,14,12 

 STOP – All nodes are marked!! 

Output 

List: 

1 2 4 3 7 6 10 13 9 11 8 5 15 14 12 
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Breadth First Search 

 L0:  1 
 L1:  2, 3 
 L2:  4,5,6,11 
 L3:  7,8,10,9,15 
 L4:  13,12,14 
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Final output:  1, 2, 3, 4, 5, 6, 11, 7, 8, 10, 9, 15, 13, 12, 14 



Breadth First Search 

 The basic idea 
 we have successive rounds and continue with our rounds 

until no new vertices are visited on a round.  
 For each round, we look at each vertex connected to the 

vertex we came from. 
  And from this vertex we look at all possible connected 

vertices.  

 This leaves no vertex unvisited 
  because we continue to look for vertices until no new 

ones of a particular length are found.   
 If there are no paths of length 10 to a new vertex, surely 

there can be no paths of length 11 to a new vertex.  

 The algorithm also terminates since no path can be 
longer than the number of vertices in the graph. 
 



Directed Graphs 
 Traversals 

 Both of the traversals DFS and BFS are essentially 
the same on a directed graph.  

 When you run the algorithms, you must simply 
pay attention to the direction of the edges.  

 Furthermore, you must keep in mind that you will 
only visit edges that are reachable from the 
source vertex. 



Graph Traversal – Application 
 Mark and Sweep Algorithm for Garbage Collection 

 A mark bit is associated with each object created in a Java 
program.  
 It indicates if the object is live or not.  

 When the JVM notices that the memory heap is low, it 
suspends all threads, and clears all mark bits.  
To garbage collect, we go through each live stack of current threads 

and mark all these objects as live.  

Then we use a DFS to mark all objects reachable from these initial live 
objects. (In particular each object is viewed as a vertex and each 
reference as a directed edge.)  

This completes marking all live objects.  

– Then we scan through the memory heap freeing all space that has NOT 
been marked. 

 



Example Exam Questions 

 What is the DFS and BFS 
of the following Graph? 

 

 What is the adjacency 
matrix and adjacency 
list of the following 
Graph? 


