

HEAPS

COP 3502

- Binary heaps are used for two purposes:
 - Priority Queues
 - Heap sort

- Priority Queue
 - A priority queue is where you always extract the item with the highest priority next.
- Priority Queue Example
 - Let's say we are Google and we want an efficient way to do determine which applicant from our applicant pool to interview when a new position opens up.
 - So we assign a priority based on a particular formula including application arrival time, GPA, and understanding of Heaps, ironically enough.

- How could we implement this using our existing methods?
 - We don't want just a normal queue, because that's FIFO, doesn't care about a priority value.
 - We could use a linked list sorted by priority.
 - Then we would have a long insertion time for insert, because we have to traverse the list to find where our element goes.

Priority: 5
Name: Sarah

Priority: 10
Name: Mags

Priority: 100
Name: Ken

Priority: 200
Name: Otto

This isn't necessary, because all we care about is the next applicant to interview, not that the list is sorted.

Consider a minimum binary heap:

- Looks similar to a binary search tree
- BUT all the values stored in the subtree rooted at a node are greater than or equal to the value stored at the node.

- The only operations we need are:
 - **➢ Insert** and **RemoveMin**
 - We can implement a heap using a complete binary tree or an array as we will talk about later.
 - No matter how we implement it, we will visualize the data structure as a tree, like the one above.

Insert

Since we want a complete binary tree

- We insert the new node into the next empty spot
- Filling each level from left to right
- Then we need to worry about where this node should move to depending on its priority.

10

Mags

Insert

- The problem is in all likelihood, if the insertion is done in this location, the heap property will not be maintained.
- Thus, you must do the following "Percolate Up" procedure:
 - If the parent of the newly inserted node is greater than the inserted value, swap the two of them.
 - This is a single "Percolate Up" step.
 - Now, continue this process until the inserted node 's parent stores a number lower than it.

Insert

Percolate Up:

- If the parent of the newly inserted node is greater than the inserted value, swap the two of them.
- Now, continue this process until the inserted node 's parent stores a number lower than it.

Heap Implementation

- Array Implementation:
 - Instead of using a binary tree implementation,
 - We can use an array implementation where the children of the node at index i are the nodes at indices 2i and 2i+1.

index	0	1	2	3	4	5	6	7	n
node	X	2 Steph	35 Sally	5 Sarah	200 Otto	100 Ken	10 Mags	45 Al	

Delete Minimum

Delete the min (which is always the root), and return:

> 2 Steph

- Now we need to replace it, but with what?
 - Replace with the last element in the array, or the last node added to the tree.
- Then Percolate Down.

Percolate Down:

If the children of this node has children less than it swap it with the MIN of its 2 children, until the node has children that are larger than it.

Runtime of heap operations

- What is the height of a complete binary tree?
 - (Where we completely fill each level from left to right)
 - The maximum height is h = log₂((n+1)/2)
- Insert
 - So for insert the maximum number of times we can swap a node up the tree in a tree with n nodes would be

$$> \log_2((n+1)/2)$$

- DeleteMin
 - And for delete the maximum number of times we can swap a node down the tree in a tree with n nodes would be
 - $> \log_2((n+1)/2)$
- So, Insert and Delete are both O(log n)

Heapify

- Bottom up heap construction
 - How to construct a heap out of an unsorted array of elements.
 - >1) Place all the unsorted elements in a complete binary tree.
 - ➤ 2) Go through the nodes of the tree in backwards order running Percolate Down on each of these nodes. (Skip over all leaf nodes.)
- Shown on the board

Heapify

- Bottom up heap construction
 - As this is done, one invariant we see is that each subtree below any node for which Percolate Down has already executed is a heap.
 - Thus, when we run Percolate Down on the root at the end of this algorithm, the whole tree is one heap.
 - Can you see why we can NOT go through the nodes in forward order?
 - Give an example where doing so produces a tree that is not a heap.

Heapify Analysis

Shown on the board

Heapsort

- Shown on the board
 - Now that we have determined how to execute several operations on a heap, we can use these to sort values using a heap. Here is the idea:
 - ▶1) Insert all items into a heap
 - ➤ 2) Extract the minimum item n times in a row, storing the values sequentially in an array.
 - Since each inserting and extraction take O(lg n) time, this sort works in O(n lg n) time.

