
Sorting

COP 3502

Sorting a List

 Let’s say we have a list of the names of people in the
class and we want to sort alphabetically
 We are going to describe an algorithm (or systematic

methods) for putting these names in order

 The algorithms we will cover today:
Selection Sort Insertion Sort Bubble Sort

BOB JOE ABE ANN SAM

Sorting a List

 Selection Sort
 Finds the smallest element (alphabetically the closest to a)

Swaps it with the element in the first position

 Then finds the second smallest element
Swaps it with the element in the second position

 Etc. until we get to the last position, and then we’re done!

BOB JOE ABE ANN SAM

Sorting a List

 Selection Sort

BOB JOE ABE ANN SAM

Min = “Bob”

“Joe” < “Bob”? “Abe” < “Bob”?

Min = “Abe”

“Sam” < “Abe”? “Ann” < “Abe”?

BOB ABE

C
U
R
R

C
H

EC
K

ER

C
H

EC
K

ER

C
H

EC
K

ER

C
H

EC
K

ER

Sorting a List

 Selection Sort
 Finds the smallest element (alphabetically the closest to a)

Swaps it with the element in the first position

 Then finds the second smallest element
Swaps it with the element in the second position

 Etc. until we get to the last position, and then we’re done!

JOE ANN SAM BOB ABE

Sorting a List

 Selection Sort

JOE ANN SAM

Min = “Joe”

“Bob” < “Joe”?

Min = “Bob”

“Sam” < “Bob”? “Ann” < “Bob”?

BOB ABE

Min = “Ann”

JOE ANN

C
U
R
R

C
H

EC
K

ER

C
H

EC
K

ER

C
H

EC
K

ER

Sorting a List

 Selection Sort

SAM

Min = “Bob”

“Sam” < “Bob”? “Joe” < “Bob”?

BOB ABE JOE ANN

C
U
R
R C

H
EC

K
ER

C
H

EC
K

ER

Sorting a List

 Selection Sort

SAM

Min = “Sam”

“Joe” < “Sam”?

BOB ABE JOE ANN

Min = “Joe”

SAM JOE

C
U
R
R C

H
EC

K
ER

Notice that now the list is sorted!

So we can stop when Curr is on the
2nd to last element.

Sorting a List

 Insertion Sort

 Take each element one by one, starting with the second
and “insert” it into the already sorted list to its left in the
correct order.

BOB JOE ABE ANN SAM

Sorting a List

 Insertion Sort

BOB JOE ABE ANN SAM

“Joe” < “Bob”?

C
U
R
R

P
R
E
V

Pos = 1

Sorting a List

 Insertion Sort

BOB JOE ABE ANN SAM

“Abe” < “Joe”?

C
U
R
R

P
R
E
V

Pos = 2

ABE JOE

C
U
R
R

P
R
E
V

BOB ABE

“Abe” < “Bob”?

Sorting a List

 Insertion Sort

ANN SAM

“Sam” < “Joe”?

C
U
R
R

P
R
E
V

Pos = 3

JOE BOB ABE

Sorting a List

 Insertion Sort

ANN SAM

“Ann” < “Sam”?

C
U
R
R

P
R
E
V

Pos = 4

JOE BOB ABE ANN SAM

“Ann” < “Joe”?

C
U
R
R

P
R
E
V

JOE ANN

C
U
R
R

P
R
E
V

“Ann” < “Bob”?

BOB ANN

C
U
R
R

P
R
E
V

“Ann” < “Abe”?

Sorting a List
 Bubble Sort

 The basic idea behind bubble sort is that you always compare
consecutive elements, going left to right.
Whenever two elements are out of place, swap them.

At the end of a single iteration, the max element will be in the last spot.

 Now, just repeat this n times

 On each pass, one more maximal element will be put in place.

 As if the maximum elements are slowly “bubbling” up to the top.

BOB JOE ABE ANN SAM

Sorting a List

 Bubble Sort

BOB JOE ABE ANN SAM

“Bob” > “Joe”?

N
E
X
T

C
U
R
R

N
E
X
T

C
U
R
R

“Joe” > “Abe”?

JOE ABE

N
E
X
T

C
U
R
R

“Joe” > “Sam”?

N
E
X
T

C
U
R
R

“Sam” > “Ann”?

ANN SAM

Sorting a List

 Bubble Sort

BOB

“Bob” > “Abe”?

N
E
X
T

C
U
R
R

JOE ABE ANN SAM BOB ABE

N
E
X
T

C
U
R
R

“Bob” > “Joe”?

N
E
X
T

C
U
R
R

“Joe” > “Ann”?

JOE ANN

Sorting a List

 Bubble Sort

“Abe” > “Bob”?

N
E
X
T

C
U
R
R

SAM BOB ABE

N
E
X
T

C
U
R
R

“Bob” > “Ann”?

JOE ANN BOB ANN

Sorting a List

 Bubble Sort

“Abe” > “Anne”?

N
E
X
T

C
U
R
R

SAM ABE JOE BOB ANN

Limitation of Sorts that only swap
adjacent elements

 A sorting algorithm that only swaps adjacent
elements can only run so fast.

 In order to see this, we must first define an inversion:

An inversion is a pair of numbers in a list that is out of order.

In the following list: 3, 1, 8, 4, 5

the inversions are the following pairs of numbers: (3, 1), (8, 4),
and (8, 5).

 When we swap adjacent elements in an array, we can
remove at most one inversion from that array.

Limitation of Sorts that only swap
adjacent elements

 Note that if we swap non-adjacent elements in an
array, we can remove multiple inversions. Consider
the following:

 8 2 3 4 5 6 7 1

Swapping 1 and 8 in this situation removes every inversion in
this array (there are 13 of them total).

 Thus, the run-time of an algorithm that swaps
adjacent elements only is constrained by the total
number of inversions in an array.

Limitation of Sorts that only swap
adjacent elements

 Let's consider the average case.

 There are pairs of numbers in a list of
n numbers.

Of these pairs, on average, half of them will be inverted.

 Thus, on average, an unsorted array will have

 number of inversions,

and any sorting algorithm that swaps adjacent elements only
will have a run-time.

2

)1(

2

nnn

)(
4

)1(2n
nn

)(2n

