SUUCF

BASE CONVERSION

COP 3502

The Decimal Numbering System

- What is the decimal numbering system?
- Have you ever thought about why we use this system or how it came about?

Base 10

Our regular counting system is decimal

- i.e. Base 10
$>$ This is because we use 10 distinct digits, $0 \rightarrow 9$
- In general the numerical value of a number, is what you were taught in elementary school:
>2713
$>=2 \times 10^{3}+7 \times 10^{2}+1 \times 10^{1}+3 \times 10^{0}$
$>$ Where each digit's value is determined by what place it's in, going from right to left:
Note: each 'place', " 3 is in the 1 's place
" 1 is in the 10 's place10
power of the base, » 7 is in the 100's place
700
i.e. $10 \quad 2$ is in the 1000's place
$+\underline{2000}$

Base Conversion

Although this may seem to be the only possible numbering system,

- it turns out that the number of digits used is arbitrary!
- We could just have easily chosen 5 digits $(0 \rightarrow 4)$,
$>$ in which case the value of a number would be:
$>314_{5}=$
$>\quad=3 \times 5^{2}+1 \times 5^{1}+4 \times 5^{0}=84_{10}$
- Thus, this is how we convert from a different base to base 10

Base Conversion

$$
314_{5}=3 \times 5^{2}+1 \times 5^{1}+4 \times 5^{0}=84_{10}
$$

In general, we can use the following formula: $d_{n-1} d_{n-2} \ldots d_{2} d_{1} d_{0 \text { (in base b) }}=d_{n-1} \times b^{n-1}+d_{n-2} x b^{n-2}+\ldots+d_{2} \times b^{2}+d_{1} \times b+d_{0}$
$>$ (Note: b raised to the 1 and 0 powers were simplified)

Base Conversion to Base 10

Given, $\mathbf{7 8 1}_{9}$ what would this be base 10 ?

- $781_{9}=7 \times 9^{2}+8 \times 9^{1}+1 \times 9^{0}$

$$
=640_{10}
$$

Given, $\mathbf{1 1 1 0 1 0 1}_{2}$ what would this be base 10 ?

$$
\begin{aligned}
>{1110101_{2}} & =1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
& =117_{10}
\end{aligned}
$$

- Base 2 is so common it's called binary
$>$ (heard of it before?)

Binary and Hexadecimal

- The uses of Binary and Hexadecimal
" A "digital" computer, (vs analog) operates on the principle of 2 possible states - ON and OFF
$>$ This corresponds to there being an electrical current present, or absent.
- So ON is " 1 " and OFF is " 0 "
- Each binary digit, or "bit" corresponds to a single "switch" in a circuit
- And if we add up enough switches we can represent more numbers, so instead of one digit we can get 8 to make a byte.

Binary and Hexadecimal

- So why do all computers use binary then?
- Simple answer - computer weren't designed to use binary, rather, binary was determined to be the most practical system to use with the computers we did design

Binary and Hexadecimal

- So this explains why we would want to use binary, but why would we ever want hexadecimal?
" Octal and hexadecimal are simply a shorter representation of binary, or a more human readable version of binary.
- Usually used more memory addresses or RGB color values
- So if you want to specify this color:
$>$ You don't have to type: 111111110000000011111111
$>$ You can type: \#FF00FF

Hexadecimal

The most common base above 10 is 16

- Which is known as Hexadecimal
- The 16 digits are:
- $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$
$>$ Where $\mathrm{A}=10, \mathrm{~B}=11, \mathrm{C}=12, \mathrm{D}=13, \mathrm{E}=14, \mathrm{~F}=15$
- Note that converting from Hexadecimal to Decimal, is the same as the previous slide
- $A 3 D_{16}=$

$$
\begin{aligned}
& =A \times 16^{2}+3 \times 16^{1}+D=10 \times 16^{2}+3 \times 16+13 \\
& =2621_{10}
\end{aligned}
$$

Converting from Hexadecimal to

Binary

- Since 16 is a perfect power of 2, converting to base 2 is relatively easy -
- We find that each hexadecimal digit is perfectly represented by 4 binary digits (since $16=2^{4}$)
- Here's a chart with the conversions between each hexadecimal digit and base 2 :

Hex	0	1	2	3	4	5	6	7
Bin	0000	0001	0010	0011	0100	0101	0110	0111
Hex	8	$\underline{9}$	A	B	C	D	$\underline{1}$	F
Bin	1000	1001	1010	1011	1100	1101	1110	1111

Converting from Hexadecimal to Binary

- Using the chart below,
- What is ACD_{16} in binary?
$>=10100011 \mathbf{1 1 0 1}_{\mathbf{2}}$

Hex	$\underline{\mathbf{0}}$	$\underline{\mathbf{1}}$	$\underline{\mathbf{2}}$	$\underline{\mathbf{3}}$	$\underline{\mathbf{4}}$	$\underline{\mathbf{5}}$	$\underline{\mathbf{6}}$	$\underline{\mathbf{7}}$
Bin	0000	0001	0010	0011	0100	0101	0110	0111
Hex	$\underline{8}$	$\underline{9}$	$\underline{\text { A }}$	$\underline{\mathbf{B}}$	$\underline{\mathbf{C}}$	$\underline{\mathbf{D}}$	$\underline{\mathbf{E}}$	$\underline{\mathbf{F}}$
Bin	1000	1001	1010	1011	1100	1101	1110	1111

Converting from Decimal to Another Base

Let's consider converting a number in decimal to another base, say binary

- For example convert 117_{10} to binary
- We know that the format is going to look something like this:
- $117_{10}=d_{6} \times 2^{6}+d_{5} \times 2^{5}+d_{4} \times 2^{4}+d_{3} \times 2^{3}+d_{2} \times 2^{2}+d_{1} \times 2^{1}+d_{0} \times 2^{0}$
- So, what we know is this:
- All of the terms on the right hand side are divisible by 2 except the last.
$>$ Sooo all of them will give a remainder of 0 , when divided by 2
$>$ Thus we know that $d_{0}=117 \% 2$, this is the remainder

Converting from Decimal to Another Base

$-117_{10}=d_{6} \times 2^{6}+d_{5} \times 2^{5}+d_{4} \times 2^{4}+d_{3} \times 2^{3}+d_{2} \times 2^{2}+d_{1} \times 2^{1}+d_{0} \times 2^{0}$
Now if we divide the right hand side by 2 , using int division we get:
$-d_{6} \times 2^{5}+d_{5} \times 2^{4}+d_{4} \times 2^{3}+d_{3} \times 2^{2}+d_{2} \times 2^{1}+d_{1} \times 2^{0}$

- This number must equal $117 / 2=58$,
- So we've come up with a process of continually reducing the equation by a factor of 2 ...

Converting from Decimal to Another Base

- $117_{10}=d_{6} \times 2^{6}+d_{5} \times 2^{5}+d_{4} \times 2^{4}+d_{3} \times 2^{3}+d_{2} \times 2^{2}+d_{1} \times 2^{1}+d_{0} \times 2^{0}$

Here is the whole process:

- $117 \% 2$ = 1 (d_{0}) 117/2 = 58
- 58 \% $2=0\left(d_{1}\right) 58 / 2=29$
- 29 \% $2=1\left(d_{2}\right) 29 / 2=14$

Now, read the answer
from the bottom up!

- $14 \% 2=0\left(d_{3}\right) 14 / 2=7$
- 7 \% $2=1\left(d_{4}\right) 7 / 2=3$
- 3 \% $2=1\left(d_{5}\right) 3 / 2=1$
- $1 \% 2=1\left(d_{6}\right) 1 / 2=0$ (we can stop)

Converting from Decimal to Another Base

- $117_{10}=d_{6} \times 2^{6}+d_{5} \times 2^{5}+d_{4} \times 2^{4}+d_{3} \times 2^{3}+d_{2} \times 2^{2}+d_{1} \times 2^{1}+d_{0} \times 2^{0}$

Here is the whole process:

- $117 \% 2=1\left(d_{0}\right) 117 / 2=58$
- 58 \% $2=0\left(d_{1}\right) 58 / 2=29$
- 29 \% $2=1$ (d_{2}) 29/2 = 14
- $14 \% 2=0\left(d_{3}\right) 14 / 2=71110101$
- 7 \% $2=1\left(d_{4}\right) 7 / 2=3$
- 3 \% $2=1\left(d_{5}\right) 3 / 2=1$
- $1 \% 2=1\left(d_{6}\right) 1 / 2=0$ (we can stop)

Practice Problem

- Convert the following from decimal to the given base:

$175 \% 3=1 \quad 175 / 3=58$
$58 \% 3=1 \quad 58 / 3=19$
$19 \% 3=1 \quad 19 / 3=6$
$6 \% 3=0 \quad 6 / 3=2$
$2 \% 3=2 \quad 2 / 3=0$,
$381_{10}=$

$381 \% 16=13$ (D) $\quad 381 / 16=23$
$23 \% 16=7 \quad 23 / 16=1$
$1 \% 16=1$
$1 / 16=0$,
so $\mathbf{1 7 5}_{10}=\mathbf{2 0 1 1 1}_{3}$.

Converting from any base

- Converting from any base (B1) to and other base (B2) where neither base is base 10
- What do we do?
- Don't panic!
$>$ We can:

1. Convert from base B1 to base 10
2. Convert from base 10 to base B2
$>$ Phew! We know how to do both of those!

Converting from any base

- If you are converting between two bases that are perfect powers of 2 ,
- the following procedure works more quickly:

1. Convert from base B1 to base 2
2. Convert from base 2 to base B2

- Consider the following example
$>$ We want to know what ACD_{16} is in base 8
$>$ We know $A C D_{16}=10100011 \mathbf{1 1 0 1}_{2}$ from before
$>$ Know we must convert the right-hand side to base 8.

Converting from any base

- We know $A C D_{16}=101000111101_{2}$ from before Now we must convert the right-hand side to base 8.
- Remember that $8=2^{3}$, so thre 3 binary digits perfectly represent one octal (base 8) digit.
- So let's just group the binary digits in sets of 3, from right to left
> 101000111 1012
- And finally convert each set of three binary digits to its octal equivalent:
> 5075 ${ }_{8}$
- Note: only works when one base is a perfect power of the second base.

Why this works:

$A 3 D_{16}=10 \times 16^{2}+3 \times 16^{1}+13 \times 16^{0}$

$$
\begin{aligned}
= & \left(1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}\right) \times 1^{2}+ \\
& \left(0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}\right) \times 16^{1}+ \\
& \left(1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}\right)
\end{aligned}
$$

$$
=\left(1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}\right) \times 2^{8}+
$$

$$
\left(0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}\right) \times 2^{4}+
$$

$\left(1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}\right)$, by rewriting 16 as a power of 2 .

$$
\begin{aligned}
= & 1 \times 2^{11}+0 \times 2^{10}+1 \times 2^{9}+0 \times 2^{8}+ \\
& 0 \times 2^{7}+0 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+ \\
& 1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}
\end{aligned}
$$

$=101000111101_{2}$.

Practice Problem

Consider writing a function that takes in a number in decimal, and prints out the equivalent value in binary.

- We can utilize what we learned about base conversion.
- The key is as follows:
$>$ If we are converting 78 from base 10 to base 2 , we calculate $78 \% 2=0$.
$>$ This is the LAST digit we want to print, since it's the units digit of our answer.
$>$ Preceding that zero, we must take the decimal number 78/2 $=$ 39, and convert THAT to binary. But, this is a recursive task!!!

