SisUCF

BINARY TREES

COP 3502

Trees

- We've already seen lists of linked nodes
- But the problem was that it took a long time to get to an arbitrary node in a linked list.
- It would be nice if we had a linked structure where nodes were more easily accessible.
- A tree is a widely used data structure that has a hierarchical set of linked nodes.
- If you think of a tree with branches
$>$ And each point where branches intersect as a node
$>$ You find a structure with a huge number of nodes, but where each path is not too long.

Trees

- A tree is a widely used data structure that has a hierarchical set of linked nodes.
- We have several ways of referring to nodes:
$>$ Biological (Root, leaves)
$>$ Familial(Parent and child)
$>$ Directional (Right Left) Root

Binary Tree

A binary tree is a data structure in which each node has at most 2 child nodes

- So these are examples of binary trees

Binary Trees

- A leaf node has no children.

Binary Trees

- A Binary Tree is full if each node is either a leaf or has exactly two child nodes.
- A Binary Tree is complete if all levels except possibly the last are completely full, and the last level has all its nodes to the left side.

Binary Trees

- The height of a binary tree is

AVL Trees

height of a binary tree:

the length of the longest path from the root to a leaf.
(the height of an empty tree is -1) (the height of a leaf is 0)

- The height of any node is 1 more than the max height of its children

Binary Trees

Total \# of nodes \mathbf{n} is

- $\mathrm{n}=2^{\mathrm{h}+1}-1$ (maximum)
- For example, if $\mathrm{h}=3$
- The max nodes in a complete tree is:
- $n=2^{4}-1=15$

Height of the full tree h,
if there are n nodes
$-\mathrm{h}=\log _{2}((\mathrm{n}+1) / 2)$

- If we have 15 nodes
- $\mathrm{h}=\log _{2}(16 / 2)$
- $=\log _{2}(8)=3$

Binary Tree Node

- A node of a binary tree is very similar to a node in a linked list.
- Except instead of having 1 field as a pointer field,
- we should have 2 pointer fields - a left and a right.
struct node \{
int data;
struct node *left;
struct node *right
\};

Binary Trees

To declare an empty binary tree:

- struct node *root = NULL;

root

NULL

To add a single node to the tree, we could do:

- root $=$
(struct node*) malloc (sizeof (struct node)) ;
- root->data $=10$;
- root->left $=$ NULL;
- root->right $=$ NULL;
root

Traversing a Binary Tree

- In a linked list we could traverse starting with the head and stopping when we got to NULL.
- We can't really do that in a binary tree
$>$ Things are not so trivial for a tree.
We will have to turn to our good old friend
- Recursion
- (Note: we're covering traversing a tree before we cover inserting into a tree, so let's assume we already have an existing tree.)

Traversing a Binary Tree

Consider the 3 components of a binary tree:

1) A node (the root node)
2) A left subtree
3) A right subtree

- What we notice is that we can treat each subtree as a binary tree with

1) A root node
2) A left subtree
3) A right subtree
$>$ This is where the recursion comes in, we'll traverse each subtree recursively.

Traversing a Binary Tree

The 3 components of a binary tree:

1) A node (the root node)
2) A left subtree
3) A right subtree

We can traverse these 3 components in any order we want

- Typically though the left is always traversed before the right.
$>$ This leaves us 3 options then:

1) Root, Left, Right - Pre-Order Traversal
2) Left, Root, Right - In-Order Traversal
3) Left, Right, Root - Post-Order Traversal

Inorder Binary Tree Traversal

- An inorder tree traversal visits the 3 parts of a tree in this order:

1) left subtree
2) root node
3) right subtree

This traversal is the most common because it is typically used to go through a sorted list in order stored in a binary tree.

- Here is a function that would print each node in a tree using an Inorder traversal:

```
void Inorder(struct node *curr)
if (curr != NULL) {
        Inorder(curr->left);
        printf("%d ", curr->data);
        Inorder(curr->right) ;
    }
}
```


Inorder Binary Tree Traversal

We'll show an example Inorder traversal on the board in class.

Preorder Binary Tree Traversal

- A preorder tree traversal visits the 3 parts of a tree in this order:

1) root node
2) left subtree
3) right subtree

Here is a function that would print each node in a tree using a Preorder traversal:

```
void Preorder(struct node *curr)
if (curr != NULL) {
    printf("%d ", curr->data);
    Preorder(curr->left);
    Preorder(curr->right) ;
    }
}
```

Inorder Binary Tree Traversal

Postorder Binary Tree Traversal

- A postorder tree traversal visits the 3 parts of a tree in this order:

1) left subtree
2) right subtree
3) root node

- Here is a function that would print each node in a tree using a Postorder traversal:

```
void Postorder(struct node *curr)
if (curr != NULL) {
    Postorder(curr->left) ;
    Postorder(curr->right) ;
    printf("%d ", curr->data);
    }
}
```


Inorder Binary Tree Traversal

We'll show an example Inorder traversal on the board in class.

Binary Search Tree

Even though we now know how to traverse a binary tree

- it's not clear how a binary tree can benefit us...
- but what if we added a restriction to a binary tree?
- Consider the following binary tree:
- What patterns are true about each node in the tree?

- For each node N all the values in the left subtree are LESS than the value in node N .
- And the values in the right subtree are GREATER than the value stored in N .

Binary Search Tree

- Binary Search Tree property:
- For each node N all the values in the left subtree are LESS than the value in node N.
- And the values in the right subtree are GREATER than the value stored in N .

- Why might this property be a desirable one?
- It's going to make searching much easier!
- Rather than "looking" both directions after checking a node, we know EXACTLY which direction to go.

Notice the Binary Search Tree Property holds true recursively, so if we look at the left subtree as a separate tree the property holds, and same for the right.

Binary Search Tree

- Searching a Binary Search Tree:
- Let's see if we can come up with the code given the following algorithm.

int Find(struct node *curr, int val) \{
// 1) if the tree is NULL, return false
// 2) Check root node, if we find val return true!
// 3) else if the val is less than root's value,
// recursively search the left subtree
// 4) else recursively search in the right subtree.

Binary Search Tree

- Searching a Binary Search Tree:
int Find(struct node *curr, int val) \{

```
if (curr != NULI) {
    if (curr->data == val)
            return 1;
    if (val < curr->data)
            return Find(curr->left, val);
        else
            return Find(curr->right, val);
}
else
        return 0;
```

\}

