" &
SuUCF
BINARY TREES

COP 3502



Trees

We've already seen lists of linked nodes

But the problem was that it took a long time to get to
an arbitrary node in a linked list.

It would be nice if we had a linked structure where
nodes were more easily accessible.

A tree is a widely used data structure that has a
hierarchical set of linked nodes.
If you think of a tree with branches

And each point where branches intersect as a node

You find a structure with a huge number of nodes, but
where each path is not too long.

&



Trees

* Atreeis a widely used data structure that has a
hierarchical set of linked nodes.

We have several ways of referring to nodes:
» Biological (Root, leaves)
» Familial(Parent and child)
> Directional (Right Left) Root




Binary Tree

" A binary tree is a data structure in which each node
has at most 2 child nodes

So these are examples of binary trees

s ®
3
8




= A leaf node has no children.

leaf

root

leaf

Binary Trees

leaf

root

\@ leaf



Binary Trees

* A Binary Tree is full if each node is either a leaf or has exactly two

child nodes.

* A Binary Tree is complete if all levels except possibly the last are
completely full, and the last level has all its nodes to the left side.

Full but not
Complete

Complete
but not Full

Neither

Complete
AND Full




Binary Trees

" The height of a binary tree is

Full but not
Complete

Complete
but not Full

Complete
@ AND Full

Neither

"o




AVL Trees

height of a binary tree: The height of any node is 1
the length of the longest path more than the max height of
from the root to a leaf. its children

(the height of an empty tree is -1)
(the height of a leaf is 0)




Binary Trees

" Total # of nodes n s
n = 2b+t1-1 (maximum)
For example, if h =3

The max nodes in a
complete treeis:

n=24-1=15

* Height of the full tree
h,

if there are n node

h =log,((n+1)/2)
If we have 15 nodes

h=log,(16/2) .
= log, (8) =3 &

Height 3

Height 2

Height 1

Height 0



Binary Tree Node

g ] struct node {
A node of a binary tree is int data:

very similar to a node in a
linked list.

Except instead of having 1
field as a pointer field,

we should have 2 pointer
fields — a left and a right.

struct node *left;
struct node *right

left data right




Binary Trees

* To declare an empty binary tree: root

struct node *root = NULL; M

* To add a single node to the tree, we could do:
root =
(struct node*)malloc(sizeof (struct node)) ;
root->data = 10;
root->left = NULL;
root

root->right = NULL;

ULL
ULL

10

%



Traversing a Binary Tree

In a linked list we could traverse starting with the
head and stopping when we got to NULL.

We can’t really do that in a binary tree
Things are not so trivial for a tree.

We will have to turn to our good old friend
Recursion

(Note: we’re covering traversing a tree before we

cover inserting into a tree, so let’s assume we already

have an existing tree.) .
&



Traversing a Binary Tree

Consider the 3 components of a binary tree:

A node (the root node)
A left subtree
A right subtree

What we notice is that we can treat each su
a binary tree with

A root node

A left subtree

A right subtree

This is where the recursion comes in, we’ll traverse each @
subtree recursively.



Traversing a Binary Tree

The 3 components of a binary tree: 5

A node (the root node)
A left subtree e 0

A right subtree e e e 0

We can traverse these 3 components in any
order we want

Typically though the left is always traversed
before the right.

This leaves us 3 options then:
Root, Left, Right — Pre-Order Traversal
Left, Root, Right — In-Order Traversal
Left, Right, Root — Post-Order Traversal @



Inorder Binary Tree Traversal

An inorder tree traversal visits the 3 parts of a tree

in this order:
left subtree
root node
right subtree

This traversal is the most common because
it is typically used to go through a sorted
list in order stored in a binary tree.

Here is a function that would print each node in a tree
using an Inorder traversal:

void Inorder (struct node *curr)
if (curr !'= NULL) {
Inorder (curr->left) ;

printf ("3%d ", curr->data);
Inorder (curr->right) ;




Inorder Binary Tree Traversal

We’ll show an example Inorder traversal on the
board in class.



Preorder Binary Tree Traversal

A preorder tree traversal visits the 3 parts of a tree
in this order:

root node
left subtree
right subtree

Here is a function that would print each node in a tree
using a Preorder traversal:

void Preorder (struct node *curr)
if (curr !'= NULL) {
printf ("%d ", curr->data);

Preorder (curr->left) ;
Preorder (curr->right) ;




Inorder Binary Tree Traversal



Postorder Binary Tree Traversal

A postorder tree traversal visits the 3 parts of a tree in
this order:

left subtree
right subtree
root node

Here is a function that would print each node in a tree
using a Postorder traversal:

void Postorder (struct node *curr)
if (curr !'= NULL) {
Postorder (curr->left) ;

Postorder (curr->right) ;
printf ("3%d ", curr->data);




Inorder Binary Tree Traversal

We’ll show an example Inorder traversal on the
board in class.



Binary Search Tree

Even though we now know how to traverse a binary
tree

it’s not clear how a binary tree can benefit us...
but what if we added a restriction to a binary tree?

Consider the following binary tree:

What patterns are true about
each node in the tree?

For each node N all the
values in the left subtree
are LESS than the value in
node N.

And the values in the right
subtree are GREATER than
the value stored in N.

&




Binary Search Tree

* Binary Search Tree property:

= For each node N all the values in the left subtree are
LESS than the value in node N.

* And the values in the right subtree are GREATER than
the value stored in N.

* Why might this property
be a desirable one?
" It’s going to make
searching much easier!

* Rather than “looking”
both directions after

Notice the Binary Search Tree Property holds checking a node, we
true recursively, so if we look at the left subtree know EXACTLY which
as a separate tree the property holds, and direction to gO0. |
same for the right.




Binary Search Tree

Searching a Binary Search Tree: @

Let’s see if we can come up with @ @

the code given the following

algorithm. @ @@ @

int Find(struct node *curr, int wval) {
// 1) if the tree is NULL, return false
// 2) Check root node, if we find wval return true!
// 3) else if the val is less than root’s value,
// recursively search the left subtree

// 4) else recursively search in the right subtree.




Binary Search Tree

Searching a Binary Search Tree:

int Find(struct node *curr, int wval) {

if (curr != NULL) {
if (curr->data == wval)
return 1;
if (val < curr->data)
return Find(curr->left, wval);
else
return Find(curr->right, wval);
}
else
return 0O;

}
R PRI IR IS TFTET TSI rErs



