
Binary Trees

COP 3502

Trees

 We’ve already seen lists of linked nodes
 But the problem was that it took a long time to get to

an arbitrary node in a linked list.

 It would be nice if we had a linked structure where
nodes were more easily accessible.

 A tree is a widely used data structure that has a
hierarchical set of linked nodes.
 If you think of a tree with branches

And each point where branches intersect as a node

You find a structure with a huge number of nodes, but
where each path is not too long.

Trees

 A tree is a widely used data structure that has a
hierarchical set of linked nodes.
 We have several ways of referring to nodes:

Biological (Root, leaves)
Familial(Parent and child)
Directional (Right Left)

Root

Leaves

Internal Nodes Parent

Child

Left Right

Binary Tree

 A binary tree is a data structure in which each node
has at most 2 child nodes

 So these are examples of binary trees

5

3 7

8 6 2 4

5

3 7

8 2

5

3

8

5

Binary Trees

 A leaf node has no children.

5

3 7

8 6

root

leaf

leaf leaf

5

root

leaf

Binary Trees

 A Binary Tree is full if each node is either a leaf or has exactly two
child nodes.

 A Binary Tree is complete if all levels except possibly the last are
completely full, and the last level has all its nodes to the left side.

5

3 7

2 4

8 6

Full but not
Complete

5

3 7

8 6 2

Complete
but not Full 5

7

5

3 7

Complete
AND Full

Neither

Binary Trees

 The height of a binary tree is

5

3 7

2 4

8 6

Full but not
Complete

5

3 7

8 6 2

Complete
but not Full 5

7

5

3 7

Complete
AND Full

Neither

AVL Trees

 The height of any node is 1
more than the max height of
its children

height of a binary tree:
the length of the longest path
from the root to a leaf.
(the height of an empty tree is -1)
(the height of a leaf is 0)

5

8 2

1

5

8 2

1 4

3

7

Binary Trees
 Total # of nodes n is
 n = 2h+1 -1 (maximum)
 For example, if h = 3
 The max nodes in a

complete tree is:
 n = 24 – 1 = 15

 Height of the full tree
h,

 if there are n nodes:
 h = log2((n+1)/2)
 If we have 15 nodes
 h = log2(16/2)
 = log2 (8) = 3

a

d f

c i s r

b g h q m l k z

Height 3

Height 2

Height 1

Height 0

Binary Tree Node

 A node of a binary tree is
very similar to a node in a
linked list.

 Except instead of having 1
field as a pointer field,

 we should have 2 pointer
fields – a left and a right.

struct node {

 int data;

 struct node *left;

 struct node *right

};

left data right

Binary Trees

 To declare an empty binary tree:
 struct node *root = NULL;

 To add a single node to the tree, we could do:
 root =

 (struct node*)malloc(sizeof(struct node));

 root->data = 10;

 root->left = NULL;

 root->right = NULL;

NULL

root

10

N
U

LL

N
U

LL

root

Traversing a Binary Tree

 In a linked list we could traverse starting with the
head and stopping when we got to NULL.
 We can’t really do that in a binary tree
Things are not so trivial for a tree.

 We will have to turn to our good old friend
 Recursion

 (Note: we’re covering traversing a tree before we
cover inserting into a tree, so let’s assume we already
have an existing tree.)

Traversing a Binary Tree

 Consider the 3 components of a binary tree:
1) A node (the root node)

2) A left subtree

3) A right subtree

 What we notice is that we can treat each subtree as
a binary tree with

1) A root node

2) A left subtree

3) A right subtree

This is where the recursion comes in, we’ll traverse each
subtree recursively.

5

3 7

8 6 2 4

3 7

8 6 2 4

Traversing a Binary Tree

 The 3 components of a binary tree:
1) A node (the root node)
2) A left subtree
3) A right subtree

 We can traverse these 3 components in any
order we want
 Typically though the left is always traversed

before the right.
 This leaves us 3 options then:

1) Root, Left, Right – Pre-Order Traversal
2) Left, Root, Right – In-Order Traversal
3) Left, Right, Root – Post-Order Traversal

5

3 7

8 6 2 4

3 7

8 6 2 4

Inorder Binary Tree Traversal

 An inorder tree traversal visits the 3 parts of a tree
in this order:
1) left subtree
2) root node
3) right subtree
 Here is a function that would print each node in a tree

using an Inorder traversal:

void Inorder(struct node *curr)

if (curr != NULL) {

 Inorder(curr->left);

 printf("%d ", curr->data);

 Inorder(curr->right);

 }

}

This traversal is the most common because
it is typically used to go through a sorted
list in order stored in a binary tree.

Inorder Binary Tree Traversal

 We’ll show an example Inorder traversal on the
board in class.

Preorder Binary Tree Traversal

 A preorder tree traversal visits the 3 parts of a tree
in this order:
1) root node
2) left subtree
3) right subtree
 Here is a function that would print each node in a tree

using a Preorder traversal:

void Preorder(struct node *curr)

if (curr != NULL) {

 printf("%d ", curr->data);

 Preorder(curr->left);

 Preorder(curr->right);

 }

}

Inorder Binary Tree Traversal

Postorder Binary Tree Traversal

 A postorder tree traversal visits the 3 parts of a tree in
this order:
1) left subtree
2) right subtree
3) root node

 Here is a function that would print each node in a tree

using a Postorder traversal:
 void Postorder(struct node *curr)

if (curr != NULL) {

 Postorder(curr->left);

 Postorder(curr->right);

 printf("%d ", curr->data);

 }

}

Inorder Binary Tree Traversal

 We’ll show an example Inorder traversal on the
board in class.

Binary Search Tree

 Even though we now know how to traverse a binary
tree
 it’s not clear how a binary tree can benefit us…
 but what if we added a restriction to a binary tree?

 Consider the following binary tree:

5

2 9

1 4 7 12

 What patterns are true about
each node in the tree?
 For each node N all the

values in the left subtree
are LESS than the value in
node N.

 And the values in the right
subtree are GREATER than
the value stored in N.

Binary Search Tree
 Binary Search Tree property:
 For each node N all the values in the left subtree are

LESS than the value in node N.
 And the values in the right subtree are GREATER than

the value stored in N.
 5

2 9

1 4 7 12

 Why might this property
be a desirable one?
 It’s going to make

searching much easier!
 Rather than “looking”

both directions after
checking a node, we
know EXACTLY which
direction to go.

Notice the Binary Search Tree Property holds
true recursively, so if we look at the left subtree
as a separate tree the property holds, and
same for the right.

Binary Search Tree

 Searching a Binary Search Tree:

 Let’s see if we can come up with

 the code given the following

 algorithm.

5

2 9

1 4 7 12

int Find(struct node *curr, int val) {

 // 1) if the tree is NULL, return false

 // 2) Check root node, if we find val return true!

 // 3) else if the val is less than root’s value,

 // recursively search the left subtree

 // 4) else recursively search in the right subtree.

}

Binary Search Tree

 Searching a Binary Search Tree:

5

2 9

1 4 7 12

int Find(struct node *curr, int val) {

 if (curr != NULL) {

 if (curr->data == val)

 return 1;

 if (val < curr->data)

 return Find(curr->left, val);

 else

 return Find(curr->right, val);

 }

 else

 return 0;

}

int Find(struct node *curr, int val) {

 if (curr != NULL) {

 if (curr->data == val)

 return 1;

 if (val < curr->data)

 return Find(curr->left, val);

 else

 return Find(curr->right, val);

 }

 else

 return 0;

}

