
Stack & Queues

COP 3502

Queues
 If we wanted to simulate customers waiting in a line

to be served,

 We wouldn’t use a stack…

LIFO is only going to make the person that got in line first mad.

Queues
 We would want to use FIFO

 First In First Out, or 1st in line 1st one to get served.

 Instead of push and pop, we have the operations

 Enqueue and Dequeue that add/remove elements
from the list.

Sidenote: Abstract Data Type

 Queues are another example of an abstract
data type (ADT)

 ADT - Something that is not built into the
language, and it is defined in terms of its behavior.

 So if I tell you to use MY implementation of a
queue to simulate customer wait times

You wouldn’t need to know how I implemented it, you
could just call the functions – Enqueue, Dequeue, etc.

Queue Basic Operations

 Enqueue:
 Inserts an element at the back of the queue
 Returns 1 if successful, 0 otherwise.

 Dequeue:
 Removes the element at the front of the queue.
 Returns the removed element.

 Peek
 Looks at the element at the front of the queue without removing it.
 Returns the front element.

 isEmpty
 Checks to see if the queue is empty.
 Returns true or false.

 isFull
 Checks to see if the queue is full.
 Returns true or false.

Queue Example

3 5 7 9 11
TIME OPERATION

1 Enqueue(13)

2 Dequeue()

3 Enqueue(15)

4 Dequeue()

5 Dequeue()

3 5 7 9 11 13

5 7 9 11 13

5 7 9 11 13 15

7 9 11 13 15

9 11 13 15

Starting
Queue:

Time 1:

Time 2:

Time 3:

Time 4:

Time 5:

front back

Queues - Array Implementation

 What would we need for an array
implementation?

 We need an array obviously

 And we need to keep track of the front and the back.

BAD Queue Implementation
Example

3 5 7 9 11
TIME OPERATION

1 Enqueue(13)

2 Dequeue()

3 Enqueue(15)

4 Dequeue()

5 Dequeue()

3 5 7 9 11 13

5 7 9 11 13

5 7 9 11 13 15

7 9 11 13 15

9 11 13 15

Starting
Queue:

Time 1:

Time 2:

Time 3:

Time 4:

Time 5:

front back

front back

back

back

back

back

front

front

front

front

Notice that you have to
Shift the contents of the
Array over each time front
changes

Queues: Array Implementation

 We will use the following revamped idea to
store our queue structure:

 Keep track of the array, the front, and the current
number of elements.

struct queue {

 int *elements;

 int front;

 int numElements;

};

Queues: Array Implementation

 Enqueue:

 We’ll simply add the given element to the index
“back” in the array.

 BUT we’re not storing “back”!!!!!

 What must we do instead?

Add it to the index: front + numElements

But what if this goes outside the bounds of our array?

struct queue {

 int *elements;

 int front;

 int numElements;

};

9 11 13 15
front

numElements = 4

Queues: Array Implementation

 Enqueue(17):

 Add it to the index: front + numElements

But what if this goes outside the bounds of our array?

Front = 2, plus numElements = 4, gives us 6

We can mod by the queueSize

(front + numElements) % queueSize = 0

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

9 11 13 15
front

numElements = 4 17 numElements = 5

Queues: Array Implementation

 So we’re allowing our array to essentially wrap
around.

 This way we don’t have to copy the contents of
our array over if front or back moves

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

9 11 13 15
front

numElements = 5 17

Queues: Array Implementation

 Dequeue

 If the numElements > 0

numElements--;

front = (front + 1) % queueSize

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

9 11 13 15
front

numElements = 5 17
front

numElements = 4

 What if our numElements == queueSize?

 We can realloc more memory for our array and
update queueSize!

 But we also need to make sure we copy over the
wraparound values correctly.

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

Q’s - Dynamically Allocated Array

Q’s - Dynamically Allocated Array

 What if our
numElements ==
queueSize?
 We can realloc more

memory for our array and
update queueSize!

 But we also need to make
sure we copy over the
wraparound values
correctly.

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

6 3 4 5

6 3 4 5

front say queueSize = 4
Enqueue(12);

elements = (int *)realloc(elements, 2*queueSize*sizeof(int));
queueSize = 2*queueSize;
BUT where do front and back go? Does this look right?

front

Q’s - Dynamically Allocated Array

 So what we really need
to do, is reset front = 0

 And copy the elements
accordingly:

 In code we could do:

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

6 3 4 5 4 5 6 3 12
front

say queueSize = 4
Enqueue(12);

front

for (i=front, j=0; i<queueSize; i++, j++)

 temp[j] = values[i];

for (i=0; i<front; i++, j++)

 temp[j] = values[i];

Queues - Linked List Implementation

 We are going to need a
linked list
 So we’ll use the same node

implementation as before.

 But we’ll need to keep track
of the front and the back.
 Otherwise either enqueue or

dequeue would require an
O(n) traversal each time.

 So we’ll keep a front and
back pointer inside of a
structure called queue.

struct node {

 int data;

 struct node *next;

};

struct queue {

 struct node *front;

 struct node *back;

};

Stack Application
 2 examples:

1) Checking if we have matching parentheses

2) Reading in a list of numbers from a user and
printing it in backwards order.

// Either prints (1) More right paren’s than left, (2)

More left paren’s than right, or (3) Paren’s are balanced

void ParenMatch();

void main(){

 printf("Give input expression without blanks: \n");

 char *InputExpression = malloc(100*sizeof(char));

 scanf("%s", InputExpression);

 ParenMatch(InputExpression);

}

