" &
SuUCF
STACK & QUEUES

COP 3502

Queues

" If we wanted to simulate customers waiting in a line
to be served,

We wouldn’t use a stack...
»LIFO is only going to make the person that got in line first mad.

Queues

= We would want to use FIFO

First In First Out, or 1%t in line 15t one to get served.

" Instead of push and pop, we have the operations

Enqueue and Dequeue that add/remove elements
from the list.

Sidenote: Abstract Data Type

Queues are another example of an abstract
data type (ADT)

ADT - Something that is not built into the
language, and it is defined in terms of its behavior.

So if | tell you to use MY implementation of a
gueue to simulate customer wait times

You wouldn’t need to know how | implemented it, you
could just call the functions — Enqueue, Dequeue, etc.

&

Queue Basic Operations

Enqueue:
Inserts an element at the back of the queue
Returns 1 if successful, O otherwise.

Dequeue:
Removes the element at the front of the queue.
Returns the removed element.

Peek
Looks at the element at the front of the queue without removing it.
Returns the front element.

iIsEmpty
Checks to see if the queue is empty.
Returns true or false.

isFull
Checks to see if the queue is full.

Returns true or false. &
A

Starting
Queue:

Time 1:

Time 2:

Time 3:

Time 4:

Time 5:

Queue Example

(3 1517 [9 [11]

front back

5 [7]9]11]13]
[5 [7]9 [21]13]15]

TIME

vi b W N

OPERATION
Enqueue(13)
Dequeue()
Enqueue(15)
Dequeue()

Dequeue()

%

Queues - Array Implementation

What would we need for an array
implementation?

We need an array obviously
And we need to keep track of the front and the back.

BAD Queue Implementation

Example

Starting
Queue: 3 5 7 9 |11

front back
Time1: | 3 5 7 9 |11 13

front back
Time2: | 5 7 9 (11 13

front back
Time 3: 5 7 9 (11|13 | 15

front back
Time4: | 7 9 (11|13 | 15

front back
Time5: | 9 | 11|13 | 15

front back

TIME OPERATION
1 Enqueue(13)
2 Dequeue()
3 Enqueue(15)
i} Dequeue()
5 Dequeue()

Notice that you have to
Shift the contents of the
Array over each time front
changes

&

Queues: Array Implementation

struct queue {
int *elements;

int front;
int numElements;

We will use the following revamped idea to
store our queue structure:

Keep track of the array, the front, and the current
number of elements.

Queues: Array Implementation

struct queue {
int *elements;
int front;

int numElements;

Enqueue: b

We'll simply add the given element to the index
“back” in the array.

What must we do instead?
Add it to the index: front + numElements

But what if this goes outside the bounds of our array?

numElements = 4 9 11| 13 | 15

front @

Queues: Array Implementation

struct queue {
int *elements;
int front;

int numElements;
int queueSize;

Enqueue(17):
Add it to the index: front + numElements
But what if this goes outside the bounds of our array?
Front = 2, plus numElements = 4, gives us 6

We can mod by the queueSize
(front + numElements) % queueSize = 0

numElements =5 17 9 111113 ! 15 .
front @

Queues: Array Implementation

struct queue {
int *elements;
int front;
int numElements;
int queueSize;

}i
So we’re allowing our array to essentially wrap
around.

This way we don’t have to copy the contents of
our array over if front or back moves

numElements =5 17 9 111113 ! 15 .
front @

Queues: Array Implementation

struct queue {
int *elements;
int front;
int numElements;
int queueSize;

};

Dequeue
If the numElements >0

numElements--;
front = (front + 1) % queueSize

numElements = 4 17 11| 13 | 15 .
front front @

Q’s - Dynamically Allocated Array

struct queue {
int *elements;
int front;

int numElements;
int queueSize;

What if our numElements == queueSize?

We can realloc more memory for our array and
update queueSize!

But we also need to make sure we copy over the
wraparound values correctly.

&

Q’s - Dynamically Allocated Array

What if our struct queue {
numElements == int *elements;
gueueSize? int front;

int numElements;
We can realloc more

memory for our array and
update queueSize!

int queueSize;

But we also need to make 6 13 G
sure we copy over the

wraparound values say queueSize = 4 front
correctly. Enqueue(12);

elements = (int *)realloc(elements, 2*queueSize*sizeof(int));
queueSize = 2*queueSize;
BUT where do front and back go? Does this look right?

6 (3 |4 |5 ®

front

Q’'s - Dynamically Allocated Array

struct queue {
int *elements;
int front;

So what we really need

to do, is reset front =0 int numElements;

int Size;
And copy the elements At quetestze

accordingly:
4 |5 |6 |3 |12 6 |3 4 |5
front front
say queueSize = 4
In code we could do: Enqueue(12);

for (i=front, j=0; i<queueSize; i++, j++)

temp[j] = values|[i];
for (i=0; i<front; i++, j++)
temp[j] = values|[i];

Queues - Linked List Implementation

struct node {

We are going to need a int data;

linked list struct node *next;
So we’ll use the same node B
implementation as before. struct queue {

But we’ll need to keep track struct node *front;

of the front and the back. struct node *back;

Otherwise either enqueue or }
dequeue would require an
O(n) traversal each time.

So we’ll keep a front and
back pointer inside of a
structure called queue.

Stack Application

2 examples:
Checking if we have matching parentheses

Reading in a list of numbers from a user and
printing it in backwards order.

// Either prints (1) More right paren’s than left, (2)
More left paren’s than right, or (3) Paren’s are balanced
void ParenMatch () ;

void main () {

printf ("Give input expression without blanks: \n");
char *InputExpression = malloc(100*sizeof (char))
scanf ("%s", InputExpression)

ParenMatch (InputExpression) ;

