
Stack & Queues

COP 3502

Queues
 If we wanted to simulate customers waiting in a line

to be served,

 We wouldn’t use a stack…

LIFO is only going to make the person that got in line first mad.

Queues
 We would want to use FIFO

 First In First Out, or 1st in line 1st one to get served.

 Instead of push and pop, we have the operations

 Enqueue and Dequeue that add/remove elements
from the list.

Sidenote: Abstract Data Type

 Queues are another example of an abstract
data type (ADT)

 ADT - Something that is not built into the
language, and it is defined in terms of its behavior.

 So if I tell you to use MY implementation of a
queue to simulate customer wait times

You wouldn’t need to know how I implemented it, you
could just call the functions – Enqueue, Dequeue, etc.

Queue Basic Operations

 Enqueue:
 Inserts an element at the back of the queue
 Returns 1 if successful, 0 otherwise.

 Dequeue:
 Removes the element at the front of the queue.
 Returns the removed element.

 Peek
 Looks at the element at the front of the queue without removing it.
 Returns the front element.

 isEmpty
 Checks to see if the queue is empty.
 Returns true or false.

 isFull
 Checks to see if the queue is full.
 Returns true or false.

Queue Example

3 5 7 9 11
TIME OPERATION

1 Enqueue(13)

2 Dequeue()

3 Enqueue(15)

4 Dequeue()

5 Dequeue()

3 5 7 9 11 13

5 7 9 11 13

5 7 9 11 13 15

7 9 11 13 15

9 11 13 15

Starting
Queue:

Time 1:

Time 2:

Time 3:

Time 4:

Time 5:

front back

Queues - Array Implementation

 What would we need for an array
implementation?

 We need an array obviously

 And we need to keep track of the front and the back.

BAD Queue Implementation
Example

3 5 7 9 11
TIME OPERATION

1 Enqueue(13)

2 Dequeue()

3 Enqueue(15)

4 Dequeue()

5 Dequeue()

3 5 7 9 11 13

5 7 9 11 13

5 7 9 11 13 15

7 9 11 13 15

9 11 13 15

Starting
Queue:

Time 1:

Time 2:

Time 3:

Time 4:

Time 5:

front back

front back

back

back

back

back

front

front

front

front

Notice that you have to
Shift the contents of the
Array over each time front
changes

Queues: Array Implementation

 We will use the following revamped idea to
store our queue structure:

 Keep track of the array, the front, and the current
number of elements.

struct queue {

 int *elements;

 int front;

 int numElements;

};

Queues: Array Implementation

 Enqueue:

 We’ll simply add the given element to the index
“back” in the array.

 BUT we’re not storing “back”!!!!!

 What must we do instead?

Add it to the index: front + numElements

But what if this goes outside the bounds of our array?

struct queue {

 int *elements;

 int front;

 int numElements;

};

9 11 13 15
front

numElements = 4

Queues: Array Implementation

 Enqueue(17):

 Add it to the index: front + numElements

But what if this goes outside the bounds of our array?

Front = 2, plus numElements = 4, gives us 6

We can mod by the queueSize

(front + numElements) % queueSize = 0

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

9 11 13 15
front

numElements = 4 17 numElements = 5

Queues: Array Implementation

 So we’re allowing our array to essentially wrap
around.

 This way we don’t have to copy the contents of
our array over if front or back moves

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

9 11 13 15
front

numElements = 5 17

Queues: Array Implementation

 Dequeue

 If the numElements > 0

numElements--;

front = (front + 1) % queueSize

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

9 11 13 15
front

numElements = 5 17
front

numElements = 4

 What if our numElements == queueSize?

 We can realloc more memory for our array and
update queueSize!

 But we also need to make sure we copy over the
wraparound values correctly.

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

Q’s - Dynamically Allocated Array

Q’s - Dynamically Allocated Array

 What if our
numElements ==
queueSize?
 We can realloc more

memory for our array and
update queueSize!

 But we also need to make
sure we copy over the
wraparound values
correctly.

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

6 3 4 5

6 3 4 5

front say queueSize = 4
Enqueue(12);

elements = (int *)realloc(elements, 2*queueSize*sizeof(int));
queueSize = 2*queueSize;
BUT where do front and back go? Does this look right?

front

Q’s - Dynamically Allocated Array

 So what we really need
to do, is reset front = 0

 And copy the elements
accordingly:

 In code we could do:

struct queue {

 int *elements;

 int front;

 int numElements;

 int queueSize;

};

6 3 4 5 4 5 6 3 12
front

say queueSize = 4
Enqueue(12);

front

for (i=front, j=0; i<queueSize; i++, j++)

 temp[j] = values[i];

for (i=0; i<front; i++, j++)

 temp[j] = values[i];

Queues - Linked List Implementation

 We are going to need a
linked list
 So we’ll use the same node

implementation as before.

 But we’ll need to keep track
of the front and the back.
 Otherwise either enqueue or

dequeue would require an
O(n) traversal each time.

 So we’ll keep a front and
back pointer inside of a
structure called queue.

struct node {

 int data;

 struct node *next;

};

struct queue {

 struct node *front;

 struct node *back;

};

Stack Application
 2 examples:

1) Checking if we have matching parentheses

2) Reading in a list of numbers from a user and
printing it in backwards order.

// Either prints (1) More right paren’s than left, (2)

More left paren’s than right, or (3) Paren’s are balanced

void ParenMatch();

void main(){

 printf("Give input expression without blanks: \n");

 char *InputExpression = malloc(100*sizeof(char));

 scanf("%s", InputExpression);

 ParenMatch(InputExpression);

}

