- 1) a) For the code segment shown below,
- (a) (4 pts) Find the Big-Oh order of this code segment in terms of n. Provide justification.

$$\sum_{i=1}^{2n} \sum_{j=1}^{n} 1 = \sum_{i=1}^{2n} 1 = n \cdot 2n = O(n^2)$$

(b) (6 pts) Determine a summation representing the final value of x. Solve for the closed form solution in terms of n.

the last n iterations of the outler loop = $n^2 + \frac{n^2 - n}{2} = \frac{13n^2 - n}{2}$

c) An algorithm runs in $O(\sqrt{n})$ time. When the algorithm is run with an input size of 14900, it takes 7 seconds to complete. How long will it take to complete on an input size of 59600?

$$CVN = time$$
, $CV14900 = 7mS$ $C = 7$ Leave it $V14900 = 7mS$ $V14900 = 14mS$ $V14900 = 14mS$ $V14900 = 14mS$

Let T(n) represent the best case run-time of a Quick Sort of n elements. Write down a recurrence relation that T(n) satisfies that is based on the standard recursive implementation of the sort.

best case we evenly divide partition the ust in half
$$T(n) = 2T(n/2) + (n)$$
2 recursive calls time it took to partition

to Quicksort on half the elements

This question was not specific enough, make the following 6) Write a recursive function that pushes all even values into a Stack and enqueue's all odd values into a Queue. Assume S and Q are initialized. Starting with the least values first, i.e. an In Order traversal 15 43 23 28 42 struct tree node { int data; struct tree node* left; struct tree node* right; }; void int question6(struct tree_node *root, Stack *S, Queue *Q) { if (root == NULL) return; question (o (root > left, S,Q); if (root > data %2 ==0) Push (S, root = data); engulul (Q, root, data):

After the function call question6(root, S, Q), where root points to tree_node 30, and s and Q are originally empty. What are the contents of S and Q?

question (o(root > right, S,Q);

a) Give the adjacency matrix of the graph above:

	U	\subset	F	R	\bigcirc	X	
U	0	1	11	0	10	10	
C .	VL.	0	10	1	0	1	1
F	10	11	0	0	0	0	
R			7 /	0			**
0	0) /1/	,6	- Anna Anna Anna Anna Anna Anna Anna Ann	
X		///		11	22	2	

b) Give the Depth First Search traversal of the graph above, starting with U and if there is a choice between vertices choose in alphabetical order.

DFS: U.C.F.R.O.X

c) Give the Breadth First Search traversal of the graph above, starting with U and if there is a choice between vertices choose in alphabetical order.

BFS: U.C.F.R.X.O