

Computer Science 1 - Program 2

Grid Computing

Assigned: 1/30/2012

Due: 2/17/2012 11:55pm on Webcourses

Objective:

1) To use the Linked List data structure taught in class.

2) Practice insertion, deletion, search, and freeing dynamically allocated memory.

The Problem:

Grid computing is a term that refers to the combination of computer resources from multiple

domains to reach a common goal. Each computer in the grid only communicates with a

centralized server, which makes the grid easy to grow or shrink in size. This is useful for

analyzing large amounts of data that would otherwise be too much work to do alone, and allows

users to freely join and leave the network. SETI@Home, MilkyWay@Home, and

Folding@Home are examples of programs that utilize grid computing to analyze massive

amounts data.

As the lead programmer for NASA’s new planetary exploration team, you are in charge of

creating a program to analyze the massive amounts of survey data coming back from a series of

state of the art probes that were launched earlier this year. You have realized that this data

would be much more than your super computers at NASA are able to keep up with, and have

decided to use grid computing to get volunteers to help. So far your system is able to send work

to all of the computers in the grid, and gathers the results for each day in a text file.

You will need to keep track of a current list of the contributing users, a list of the discovered

planets, and a list of the verified planets. A discovered planet requires 3 separate users to

discover it before it is a verified planet. It is important to keep track of the number of GB each

user has contributed, since the website will update the user rankings each day. One of the

reasons users love volunteering is so that they can brag to all of their friends about their ranking

on the website!

Implementation:

You must use the exact structures as follows:

typedef struct GeocentricCelestialReferenceFrame {

 int x;

 int y;

 int z;

} GCRF;

typedef struct DiscoveredPlanet {

 int usersConfirmed;

 int type;

 GCRF*coordinates;

 struct DiscoveredPlanet* next;

} DiscPlanet;

typedef struct VerifiedPlanet {

 int type;

 GCRF*coordinates;

 struct VerifiedPlanet* next;

} VerPlanet;

typedef struct UserWorkCompleted {

 char firstName[20];

 char lastName[20];

 int gbAnalyzed;

 int planetsDiscovered;

 struct UserWorkCompleted* next;

} UserWork;

An enum is also provided for the planet types:
typedef enum {

 NONE = 0,

 GAS = 1,

 ICE = 2,

 STORM = 3,

 BARREN = 4,

 TEMPERATE = 5,

 LAVA = 6,

 OCEANIC = 7,

 PLASMA = 8,

 UNKNOWN = 9

 } Planets;

Input File Specifications (GridComputing.in):

The input file will contain an integer n which will specify the number of user entries in the file.

The number of user entries, n, will be followed by 3n lines, where each user entry consists of 3

lines: (1) the last name of the user followed by the first name, (2) the GB analyzed, (3) the type

of planet discovered (if any), if a planet is discovered it will be followed by the position x, y, z.

The input file format will be as follows:

n

Last First

GBAnalyzed

planetsDiscovered

etc ...

Example Input:
16

Buchanan Sarah

45

0

Brown Charlie

1

0

Buchanan Ryan

22

0

Trump Ivanna

33

0

Buchanan Sarah

98

1 40 40 40

Duck Donald

12

0

Brown Charlie

1

0

Buchanan Ryan

22

0

Buchanan Sarah

78

2 95 89 73

Trump Ivanna

33

0

Trump Ivanna

33

5 12 13 14

Brown Charlie

33

5 12 13 14

Brown Charlie

78

2 95 89 73

Brown Charlie

98

1 40 40 40

Buchanan Ryan

98

1 40 40 40

Buchanan Ryan

33

5 12 13 14

For each user entry you will need to update the following:

1) Check if the user already exists in the UserWorkCompleted Linked List

a) If the user does NOT exist, add that user to the list such that it is sorted by last name.

Sort again by the first name if any duplicate last names are found.

b) If the user does exist, update the user’s GBAnalyed and planetsDiscovered

2) If a planet was discovered, see if the planet exists in the DiscoveredPlanet Linked List

b) If the planet does NOT exist, add it to the list - the discovered planet list acts as a

temporary queue and should not be sorted. New elements should be added to the end

of the list. If the planet does exist, update its number of users confirmed.

a) If the number of users confirmed > 2, the planet should be removed

 from the discovered planets linked list and added to the verified planets linked list. You

can assume that if a planet is added to the verified list users will no longer be working to

discover a planet in that same area, meaning that it will not show up again in the input data.

b) All planets in the verified planet list should be sorted by distance from the

Earth (where Earth is 0,0,0 in GCRF)

3) Once the you have finished reading from the file and completed updating all lists, you will

need to print the following statistics:

1) The list of users sorted by their name with the number of GBAnalyzed.

2) The list of planets discovered with the current number of users confirmed.

3) The list of verified planets, sorted by the distance from the Earth.

Output File Specifications (GridComputing.out):

The output file will contain the following format. Please use the partially completed fprintf calls

to model your output.

fprintf(fp, "Users:\n");
fprintf(fp, "\t%s, %s - Analyzed:%d Discovered:%d\n", …);

fprintf(fp, "\nDiscovered Planets:\n");
fprintf(fp, "\t(%d,%d,%d) - Confirmed:%d Type:%d\n", …);

fprintf(fp, "\nVerified Planets:\n");
fprintf(fp, "\t(%d,%d,%d) - Type:%d\n", …);

Example Output:
Users:

 Brown, Charlie - Analyzed:211 Discovered:3

Buchanan, Ryan - Analyzed:175 Discovered:2

 Buchanan, Sarah - Analyzed:221 Discovered:2

 Duck, Donald - Analyzed:12 Discovered:0

 Trump, Ivanna - Analyzed:99 Discovered:1

Discovered Planets:

 (95,89,73) - Confirmed:2 Type:ICE

Verified Planets:

 (12,13,14) - Type:TEMPERATE

 (40,40,40) - Type:GAS

Requirements:

1. Solution file name GridComputing.c

a. Reads from GridComputing.in

b. Writes to GridComputing.out

c. CASE SENsITIVe, and no .txt files!!!!

2. Header comments, use of comments throughout, and whitespace for readability.

3. No system commands, for example no system(“PAUSE”)

4. Must use Linked Lists, and must use the Structures provided.

5. Must match the output format exactly.

