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STACKS 

 
A stack is a linear data structure for collection of items , with the restriction that items 
can be added one at a time and can only be removed in the reverse order in which they 
were added. The last item represents the top of the stack. Such a stack resembles a stack 
of trays in a cafeteria, or stack of boxes. Only the top tray can be removed from the stack 
and  it is the last one that was added to the stack.  A tray can be removed only if there are 
some trays on the stack, and a tray can be added only if there is enough room to hold 
more trays.  
 
 
 
 
 
 
 
 
 
 
 
 
A stack is defined in terms of its behavior. The common operations associated with a 
stack are as follows: 

 
1. push: adds a new item on top of a stack. 
2. pop: removes the item on the top of a stack 
3. isEmpty: Check to see if the stack is empty 
4. isFull: Check to see if stack is already full 
5. returnTop: Indicate which item is at the top 

 
 
 
A stack is a dynamic structure. It changes as elements are added to and removed from 
it. It is also known as a LIFO (Last In First Out) structure.  
 
 

top 
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A stack is very useful in situations when data have to be stored and then retrieved in the 
reverse order. Some applications of stack are listed below: 
  
Function Calls: 
We have already seen the role stacks plays in nested function calls. When the main program 
calls a function named F, a stack frame for F gets pushed on top of the stack frame for main. 
If  F calls another function G, a new stack frame for G is pushed on top of the frame for F. 
When G finishes its processing and returns, its frame gets popped off the stack, restoring F to 
the top of the stack.  
 
 
Large number Arithmetic: 
As another example, consider adding very large numbers. Suppose we wanted to add 
353,120,457,764,910,452,008,700 and 234,765,000,129,654,080,277. First of all note that it 
would be difficult to  represent the numbers as integer variables, as they cannot hold such 
large values. The problem can  be solved by treating the numbers as strings of numerals, 
store them on two stacks, and then perform addition by popping numbers from the stacks.  
 
 
Evaluation of arithmetic expressions: 
Stacks are useful in evaluation of arithmetic expressions. Consider the expression  
5 * 3 +2 + 6 * 4 
The expression can be evaluated by first multiplying 5 and 3, storing the result in A, adding 2 
and A, saving the result in A. We then multiply 6 and 4 and save the answer in B. We finish 
off by adding A and B and leaving the final answer in A.  
A = 15   2 + 
    = 17 
B =  6   4  * 
   =  24 
A = 17   24  + 
    =  41 
 
We can write this sequence of  operations as follows: 
 
5    3  *   2  +    6    4  *   + 
 
This notation is known as  postfix notation and is evaluated as described above. We shall 
shortly show how this form can be generated using a stack.  
 
Basically there are 3 types of notations for expressions. The standard form is known as the   
infix form. The other two are  postfix and  prefix forms.  

 
Infix: operator is between operands       A + B 
 
Postfix : operator follows operands       A B + 
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Prefix: operator precedes operands       + A B 
 
Note that all infix expressions can not be evaluated by using the left to right order of the 
operators inside the expression. However, the operators in a postfix expression are ALWAYS 
in the correct evaluation order.  Thus  evaluation of  an infix expression is done in two steps. 
The first step is to convert it into its equivalent postfix expression. The second step involves 
evaluation of the postfix expression. We shall see in this section, how stacks are useful in 
carrying out both the steps. Let us first examine the basic process of infix to postfix 
conversion. 
 
 
 
Infix to postfix conversion: 
 
a + b * c Infix form   
 
 (precedence of * is higher than of +) 
 
a  + (b * c)  convert the multiplication 
 
a + ( b c * )   convert the addition 
 
a  (b c * ) +      Remove parentheses 
 
 a b c * +        Postfix form 
 
Note that there is no need of parentheses  in postfix forms. 
 
Example 2: 
 
( A + B ) * C   Infix form 
 
( A B + ) * C Convert the addition 
 
(A B + ) C *  Convert multiplication 
 
A B + C * Postfix form  
 
 
 
No need of parenthesis anywhere  
 
Example 3: 
 
a + (( b * c ) / d )        
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a + ( ( b c * ) /d ) 
 
(precedence of  *   and   /   are same and they are left associative) 
 
a + ( b c * d / )              
 
a b c * d / +    
 
 
 
 
 
 
 
• More examples 
 
Infix Postfix 
 
(a + b) * (c – d) a b + c d - *  
 
a – b / (c + d * e) a b c d e * + / - 
 
((a + b) * c – (d – e))/(f + g) a b + c * d e - - f g + / 
 
 
 
Order of precedence for  operators: 

 
multiplication (*) and division (/) 
 
addition (+) and subtraction (-) 
 
The association is assumed to be left to right. 
 
i.e. a + b + c  = (a+b)+c = ab+c+ 
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Evaluating a Postfix Expression  
 
We can evaluate a postfix expression using a stack. Each operator in a postfix string 
corresponds to the previous two operands .  Each time we read an operand we push it onto a 
stack.  
 
When we reach an operator its associated operands (the  top two elements on the stack ) are  
popped out from the stack.  
 
We  then perform the indicated operation on them and push the result on top of the stack so 
that  it will be available for use as one of the  operands for the next operator . 
 
The following example shows how a postfix expression can be evaluated using a stack. 
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Example 
 
6 5 2 3 + 8 * + 3 + * 
 
 
       

          3 

        2     2 

     5      5     5 

   6     6      6    6 

 
1           2             3     4 

 
 
       

       8     

     5        5                40         

     5       5         5        45 

      6       6         6      6 

 
5           6             7     8 
 

 
 
       

       

             

                

    3             

   45     48     

  6    6  288   

 
 
 
The process stops when there are no more  operator left in the string. The result of 
evaluating the expression is obtained just by popping off the single element. More 
examples will be done in the lecture and recitation labs. 
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Converting an Infix Expression to Postfix 

 
 A stack can also be used to convert an infix expression in standard form into postfix form. 
We shall assume that the expression is a legal one (i.e. it is possible to evaluate it). When an 
operand is read, it will be placed on output list (printed out straight away). The operators are 
pushed on a stack. However, if the priority of the top operator   in the stack is higher than the 
operator being read, then it will be put on output list, and the new operator pushed on to the 
stack. The priority is assigned as follows. 
 
Priority 
 
1.  (      Left parenthesis in the expression 
2.  *     / 
3.   +      –  
4.    (      Left parenthesis inside the stack 
 
The left parenthesis has the highest priority when it is read from the expression, but once it is 
on the stack, it assumes the lowest priority.  
 
To start with , the stack is empty.  The infix expression is read from left to right. If the 
character is an OPERAND, it is not put on the stack. It is simply printed out as part of the 
post fix expression.  
The stack stores only the OPERATORS. The first operator is pushed on the stack. For all 
subsequent operators, priority of the incoming operator will be compared with the priority of 
the operator at the top of the stack.  
 
If the priority of the incoming-operator is higher than the priority of topmost operator-on-the-
stack , it  will be pushed on the stack.  
If the priority of the incoming-operator is same or lower than the priority of the operator at 
the top of the stack, then the operator at top of the stack  will be popped and  printed  on the 
output expression.  
 
The process is repeated if the priority of the incoming-operator is still same or lower than the 
next operator-in-the stack.  
When a left parenthesis is encountered in the expression it is immediately pushed on the 
stack, as it has the highest priority.   However, once it is inside the stack, all other operators 
are pushed on top of it, as its inside-stack priority is lowest. 
 
When a right parenthesis  is encountered, all operators up to the left parenthesis are popped 
from the stack and printed out. The left and right parentheses will be discarded. When all 
characters from the input infix expression have been read, the operators remaining inside the 
stack,  are printed out  in the order in which they are popped. 
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 Here is an algorithm for converting an infix expression into its postfix form. 
 
Algorithm: 
 
 
 while there are more characters in the input 
 { 

Read next symbol ch in the given infix expression.  
If ch is an operand put it on the output.  
If ch is an operator i.e.* , /, +, -,  or  ( 
 {  
 If stack is empty push ch onto stack; 

Else check the item op at the top of the stack;  
 while (more items in the stack   &&                    
                       priority(ch) <= priority (op) )  
 { 

pop op and append it to the output, provided it 
is not an open parenthesis 

       op = top element of stack  
} 
push ch onto stack 

 } 
 If  ch is right parenthesis ‘)’ 
  Pop items from stack until left parenthesis  
              reached 

Pop  left parenthesis and discard both left  
  and right parenthesis 

}/* now no more characters in the infix expression*/ 
 
Pop remaining items in the stack to the output.  
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Using a stack to convert an  Infix expression into its 
corresponding postfix form  ( some examples)  
 
 
 Consider the following expressions with the infix notation. We want to transform these  
into  postfix expressions using a stack. We also trace the state of the operator stack as 
each character of the infix expression is processed.  
 
The contents of the operator stack at the indicated points in the infix expressions (points 
A, B and C) are shown below for each case 
 
 
1. 
                A          B             C 
        |                |  |   
   M        +     P      *                Q  
 
 
 

 
 
Resulting Postfix Expression :         M P Q * + 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
     

     
    * 
  +  + 

A  B  C 
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2. 
 
                A          B             C 
        |                |  |   
   R        *    P       +              T  
 
 
 

 
 
Resulting Postfix Expression :         R P  * T + 
 
 
 
 
3. 
 
                A          B             C 
        |                |  |   
   N        –     P       +              T  
 
 
 

 
 
Resulting Postfix Expression :         N P –  T + 
 

     
     

     
     
  *  + 

A  B  C 

     
     

     
     
   –   + 

A  B  C 
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4. 
 
                A          B             C 
        |                |  |   
       M  +       (    P  –    K  )   *        T  
 
 
 

 
 
Resulting Postfix Expression :         M P K –  T  * + 
 
 
5. 
 
                A            B C 
        |                  | |  
            M –    P / (  T – K  * N   ) +        R  
 
 
 

 
 
Resulting Postfix Expression :         M P T K N * –  /  –  R + 
 
 

     
     

   –    
  (  * 

+   +   + 
A  B  C 

  *   
  –   

(  (   
/  /   
 –     –    + 
A  B  C 


