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Deleting a node from a Binary Search 
Tree 
 
 
 
Deletion of a node is not so straightforward as is the case of 
insertion. It would depend on which particular node is 
being deleted.  
 
In fact, we note that there can be three separate cases and 
each case needs to be handled somewhat differently.  The 
various cases are: 
 

(1) deletion of a leaf node,  
(2) deletion of an internal node with a single child 

(either a left or right subtree), 
(3) deletion of an internal node with two children 

(having both  left subtree and right subtree.  ) 
 
We’ll examine each case separately: 
 
 
 
 
 
 



Deletion of a leaf Node 
 
 
Since a leaf node has empty left and right subtrees, deleting 
a leaf node will render a tree with one less node but which 
remains a BST.  This is illustrated below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A BST with a leaf node    Still a BST 
Marked for deletion. 
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Deletion of a  Node with one child 
 
In this case, when the node gets  deleted, the parent of the 
node must point to its left child or its right child, as the case 
may be. 
The parent’s reference to the node is reset to refer to the 
deleted node’s child.  This has the effect of lifting up the 
deleted node’s children by one level in the tree.  
 An example is shown below. 
 
 
 

A BST with an internal node 
having only one child marked 
to be deleted 
 

 
 
 
 
 
 
 
 
 

The marked internal node has 
only a right subtree so the parent 
of the deleted node will now  
reference the deleted node’s child 
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Note that it makes no difference if the node to be deleted 
has only a left or a right child.  The previous example 
illustrated the case when the only child was a right child.  
The next example illustrates the case when the only child is 
a left child. 
 
 
 
 
 
 
 Initial BST with the node to be 
 deleted shown in green.  Its only 
 child is a left child 
 
 
 
 
 
 
 
 
 

 The BST after the deletion  
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Deletion of a  Node with two child nodes 
 
 
The last case of deletion from a BST is the most difficult to 
handle.  There is no one-step operation that can be 
performed since the parent’s right or left reference cannot 
refer to both node’s children at the same time.  
 
 There are basically two different approaches that can be 
used to handle this case:  
 
deletion via merging  
 
and  
 
deletion via copying  
 
which essentially reduce to the following scenario: 
 

A deleted node with two children must be replaced 
by a value which is one of: 
 

 The largest value in the deleted node’s left 
subtree. 

 The smallest value in the deleted node’s right 
subtree. 

 
The above technique means that we need to be able to find, 
either the immediate predecessor or the immediate 



successor node to the node which is being deleted and 
replace the deleted node with this value.    
 
As an example, consider the following BST and suppose 
that we are deleting the value 18 from this tree. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since the node containing 18 has two children it fits into 
this category for deletion.  
 
 Its immediate predecessor is the rightmost node in its left 
subtree (which is 13),  
so our first choice would be to move 13 into the node 
currently occupied by 18, this is shown below: 
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We could have, just as easily, found the immediate 
successor of 18 which is the leftmost node in its right 
subtree and put this value into the place currently occupied 
by 18.   
This case is shown below. 
 
 
 
 
 
 
 

43 

59 

13 67 

32 63 72 

25 

43 

59 

25 67 

13 32 63 72 



Notice that in both cases, the node which is physically 
deleted from the BST is a leaf node, and this is the trivial 
deletion case.   
 
Also notice, that while there is no fundamental difference is 
selecting the immediate predecessor or the immediate 
successor as the replacement for the deleted value, in 
reality there may be a difference.   
 
The example above, illustrates, to some degree, this 
difference which results from a potential difference in the 
heights of the two subtrees.   
 
In the example above, the immediate predecessor was the 
better choice since it was only one level away from the 
node to be deleted and therefore our search to find this 
node would be shorter than the search to find the immediate 
successor which was two levels away.   
 
While a few levels difference in the location of the 
immediate predecessor and immediate successor may not 
make much difference,  
 
it certainly will if there is a big difference between the two 
heights and obviously, the shorter the height the quicker the 
search and this is the way to go. 
 
 
 
 



The General case of  Deletion of a node 
having two child nodes. 
 
In the following tree, we want to delete the node q. The 
node q has T1 as left subtree and T2 as right subtree.  
 
Note that all nodes of T1 are going to be smaller than nodes 
of T2.   
Note further that the rightmost node of T1 will have  the 
largest value in that subtree. 
 
It will be immediate predecessor of  node q.  All nodes in 
T2 will be successor of this node. 
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Let us take a specific example to illustrate the point: 
 
 
 
Consider the tree: 
 
 
 
 
 

 
 
 
 
In order traversal: C D E G J K L N P R S T W Y 
Now let us say we want to delete node N.  
So let us find the rightmost node of the left subtree. In this 
tree this happens to be  L. 
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All elements in the left subtree are going to be smaller than 
this node. 
 
All elements in the right subtree are going to be greater 
than this node. It can simply replace N, while keeping the 
structure of the tree undisturbed.  So copy the node L in N. 
 
 

 
 
 
The value of  L  at the leaf  node now can be deleted. 
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The node  N can also be removed by replacing it with left 
most node of the right subtree and making the appropriate 
links. In this case  node P becomes the right child of C  
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Now the leaf node  P can be deleted ,resulting in the tree 
 
 
 
 
 
 
 

C

P 

D 

G 

K 

J LE 

T 

R 

P S

W 

Y



 
 
 
 
 
The subtree G becomes the left child of P  
And the subtree T becomes the right child of  P. 
 
 
 
 
In order traversal:  C D E G J K    L P R S T W Y  
 
Exercise:  In the tree drawn above, delete the node W. 
 
[ Hint: Replace it by the right most child of its left subtree. 
In this case there is just one element S. So simply replace 
W by S. Verify  every time that the inorder traversal of the 
nodes turns out to be the alphabetical order. ]  
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Practice Problems 
 
Shown below are three problems for you to practice writing 
algorithms for operations on binary trees.    Since the tree 
has a naturally occurring recursive definition, make your 
functions recursive. 
 
 

1. Write a function that will count the number of leaf 
nodes in a binary tree. 

 
2. Write a function that will find the height of a 

binary tree.  The height of an empty tree is defined 
a zero.  The height of a single node tree is defined 
as 1. 

 
3. Write a function that will interchange all the left 

and right subtrees in a binary tree. 
 
 


