
Trees – II 
 
 
 
Non-Recursive PreOrder Traversal 
Expression Trees 
Binary Search Tree 

- Searching 
- Insertion 
- Traversal 
- Creation 

 
 
 
 
 
 
 
 
 
 
 
 



Carry out a pre-order traversal of  this tree 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

void preorder(struct tree_node * p) 
{ if (p !=NULL) { 
  printf(“%d”, p->data); 
  preorder(p->left_child); 
  preorder(p->right_child); 

} 
} 
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Preorder Traversal:   M P R S Q T 
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Carry out  in-order traversal of this tree 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

void inorder(struct tree_node *p) 
{ if (p !=NULL) { 
  inorder(p->left_child); 
  printf(“%d\n”, p->data); 
  inorder(p->right_child); 

} 
} 
IN ORDER  TRAVERSAL:  R P  M T Q 
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In ORDER TRAVERSAL :  R P S M T Q 
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Non Recursive implementation of preorder tree 
traversal 
 
In a preorder traversal, we visit the root node first, then we 
visit its left subtree (all the nodes) and finally visit its  right 
subtree.  How do we actually visit all the nodes of a 
subtree? We can write a non-recursive algorithm by making 
use of a stack. To start with we push the root node  on the 
stack. Then we push the  right child and the left child of the 
current node on a stack recursively. Then we pop them and 
print them. Look at this implementation: 
 
 
*p = root; 
if (p != NULL) 
{ 
   push(p); 
   while ( stack not empty)  
    { 
        p = pop stack; 
   printf(“%d “,p->data); 
       if ( p->right_child != NULL) 
            push ( p-> right_child);  
       if (p ->left_child != NULL)  
           push (p -> left_child);  
      }  
} 
   
 /* note the left child is pushed on top of right node, so that 
it gets popped up first */ 



 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Non Recursive Preorder Traversal:    
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Expression Trees 
Many compilers make use of trees, as they serve as ideal 
representations for the hierarchical structure of a program. 
Design of a compiler is a complex process, which you shall 
learn in a later course. Let us look at one particular aspect 
of compiler, which deals with evaluation of arithmetic 
expressions.  An arithmetic expression can be represented 
as a binary tree. Such a tree is called an Expression Tree. 
An expression tree is a binary tree representing an 
arithmetic expression where the leaf nodes of the tree 
represent the operands (variables or constants) and the 
internal nodes and the root node represent the operators. 
 

Constructing an Expression Tree 
 
 
Constructing an expression tree involves two parts: 
Lexical Analysis: Dividing the input into tokens, each of 
which represents either integer constant, an operator or a 
variable name.  
Parsing: Determining if the individual tokens represent a 
legal expression and finding out the structure of that 
expression.  
Generating an expression tree from an infix expression is 
not very difficult if there is no ambiguity in the  expression 
and it is overly parenthesized. 
 
Example : 
 
 3 + 5 / 9 +  8   could mean 



 
(3 + ( 5/9 ) + 8 )    or      ( 3 + 5 / ( 9 +8)) 
 
There will be one distinct expression tree  for each of the 
interpretations depending on the parsing scheme. 
 
In this section we consider building an expression tree 
given the  expression  in its postfix form. 
 
 
The  construction starts with reading the postfix 
expression one symbol at a time.  
 
If the symbol is an operand , we create a one-node tree 
and push it onto a stack.  
 
If the symbol is an operator, we pop two trees T1 and 
T2 from the stack (popping up T1 first), and form a 
new tree with the operator as the root, T2 as the left 
child and T1 as the right child.  
 
The new tree is then pushed onto the stack. 
 
As an example,  let the input expression be 
 
a b +  
The first two symbols are operands. So we create one node 
trees and push them onto a stack. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The next symbol is an operator  +, so the two one node 
trees are popped, and a new tree is formed. The first tree to 
be popped is the one containing b, so this becomes the right 
child of the operator, the second tree to be popped contains 
the operand  a , and this becomes the left child of the 
operator. 
 
 
 
 
 
 

a b 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The expression tree is now constructed. It is obvious that he 
evaluation of the expression is nothing but in-order 
traversal to yield  a + b. 
 
 
 
Let us take a larger expression: 
 
a b + c d e + * * 
 
Let us say we have processed the first three tokens, and  
have already reached the ‘+’ operator. 
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 Next we read c, d, e and construct one node trees and push 
them onto the stack. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next is an operator ‘+’, so last two trees are popped out  
and a new tree formed with this as root. 

 

a b 

+ c 

d 

e 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next symbol is another operator ‘*’, so again two trees are 
popped from the stack and merged to form a new tree with 
this operator at the root: 
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Finally the last operator ‘*’ causes the last two entries from 
the stack to be pulled out , i.e. the tree containing ‘+’ at the 
root and the tree containing ‘*’ at the root.  
These are merged with the second ‘*’ operator as the root, 
and the expression tree is complete, and now it is  the only 
entry in the stack. 
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Let us now see how do we evaluate this tree.  
 
 
int eval (struct tree_node *p) 
{  
  int lhs, rhs;  
  char op; 
  if ( p -> left_child = NULL && (p->  
right_child = NULL) 
      return ( p->data);  
  else  

lhs = eval( p ->left_child);  
rhs = eval( p ->right_child); 
op = p ->data; 
switch (op) { 
 case ‘+’: return (lhs+rhs); 
 case ‘-’: return (lhs-rhs); 
 case ‘*’: return (lhs*rhs); 
 case ‘/’: return (lhs/rhs); 

} 
 
 
 
 
 
 
 
 
 
Binary Search Tree (BST) 
 



We have seen earlier that if the values in nodes of a binary 
tree are arranged in a specific order, with all elements 
smaller than the root stored in left subtree and all elements 
greater than the root stored as right subtree,  it represents a 
sorted list. The search complexity reduces considerably, as 
the height of the tree is much less than total number of 
elements. Of course, one has to keep in mind that the tree 
has to be organized in a specific manner. Such a tree is 
known as a Binary Search tree, because it permits us to 
carry out a search similar to the Binary search method that 
we have used on a sorted array. 
 
 Let us first of all define a BST. 
 
A Binary search tree (BST) is a binary tree that is  
 
either empty ,  or 
 
each node contains a data value  satisfying the following: 
 

a) all data values in the left subtree are smaller than the 
data value in the root. 

 
b) the data value in the root is smaller than all values in 

its right subtree. 
 
c) the left and right subtrees are also binary search tees. 

 
 
Searching for a target  



in the Binary Search Tree 
 
The definition of a binary search tree  allows us to quickly 
search for a particular value in the BST. Check the given 
value with the value in the root node. If it matches, return 
1, else if given value is smaller , look into left subtree, else 
look into right subtree. If subtree is null, return 0. 
 
 
 
struct tree_node{ 
 int data; 
 struct tree_node *left_child; 
 struct tree_node *right_child; 
}; 
 
int treeSearch( struct tree_node *p, int 
target) 
{ if (p!=NULL) 
    { 

     if (p->data == target) 
    return 1; 
        else if (p->data > target) 
         treeSearch(p->left_child); 
    else  
        treeSearch(p->right_child); 

    } 
 return 0; 

} 
 
 
 



 
 
Example Tree: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Inserting a node in a BST 
 

59 

18 67 

13 32 63 72 

25 



Insertion of a new node in a BST has to be done only at the 
appropriate place for it, so that overall BST structure is still 
maintained, i.e. the value at any node should be less than 
that at right node and less than that at the left node.   
 
Inserting a new node into a BST always occurs at a NULL 
pointer.  
 There is never a case when existing nodes need to be 
rearranged to accommodate the new node.  
  
 As an example, consider inserting the new value 43 into 
the BST shown above.  Where is the new node supposed to 
go?   
 
 
 
Hint: search for node containing 43. Obviously,  you won’t 
find it, but the search algorithm has taken you to the NULL 
pointer where it should be placed, so this is the appropriate 
place to insert it. 
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      43 should 
      be here, so put it here! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assume that a  node “new” has been created containing the 
data, and that both the left and right child fields have been 
set to NULL. It is now desired to insert the node at its 
proper place in an existing BST with root node p. 
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struct node* insert(struct tree_node *p, struct 
tree_node *new) 
{ 
   
  if (p == NULL) 
       p = new; 
  else 
     if(p->data >new->data) 
       p->left_child= insert(p->left_child, new); 
     else 
       p->right_child=insert(p->right_child, new);     
     
     return p; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Traversing a Binary Search Tree 
 
The above BST can be traversed starting with the root node  
(Preorder traversal) to result in the sequence 
 



59,18,13,32,25,43,67,63,72 
 
However, an interesting feature is revealed with the Inorder 
Traversal which yields 
 
13, 18, 25, 32, 43, 59, 63, 67, 72 
 
What do you notice? This is an ordered listing of the values 
of BST nodes, with the left most node being the smallest 
element and the right most node being the largest element. 
 
 
Creating a Binary Search Tree 
 
To create a binary search tree, keep on inserting the nodes  
as and when they arrive. Note that the shape of the BST 
will depend on the order of insertion of the nodes. 
The above tree was created from the sequence  
 
59, 18, 13, 67, 32, 72, 25, 63, 43 
 
If the values arrived in the order  
13, 18, 25, 32, 43, 59, 63, 67, 72 
 
the BST would take the following shape 
 
 



 
 
 
 
 
 
 
 
Notice that it is not a balanced tree, but skewed towards 
right. In such a case, the search and insertion complexity 
would be O(n) instead of O(log n).  If the sequence were 
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entered in descending order then it would result in a left-
skewed tree. For any other ordering of the sequence the 
complexity would lie in between O(n) and O(log n).  
 
Suppose we were interested in generating a balanced BST, 
given any arbitrary sequence of values. 
 We could this by first storing all the elements in an array 
and sorting them in ascending order. 

• Once sorted, the element at the midpoint of the array 
will become the root of the BST.  The array can now 
be viewed as consisting of two subarrays, one to the 
left of the midpoint and one to the right of the 
midpoint. 

• The middle element in the left subarray becomes the 
left child of the root node and the middle element in 
the right subarray becomes the right child of the root. 

• This process continues with further subdivision of the 
original array until all the elements in the array have 
been positioned in the BST. 

• Take care to completely generate the left subtree of 
the root before generating the right subtree of the root.  
If this is done, a simple recursive procedure  can be 
used to generate a balanced BST. 

 
 
 
 
void balance( int sequence[], int 
first, int last)  
{ 

int mid; 
   if (first <= last) { 



      mid = (first + last)/2;  
      insert_BST(data[mid]); 
      balance(data, first, mid-1); 
      balance(data, mid+1, last); 
   } 
} 
 
 
where the function insert_BST creates a new node with the 
value data[mid] and calls the ‘insert ‘ function to insert the 
new node into the BST. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 



 


