
Trees – II

Non-Recursive PreOrder Traversal
Expression Trees
Binary Search Tree

- Searching
- Insertion
- Traversal
- Creation

Carry out a pre-order traversal of this tree

void preorder(struct tree_node * p)
{ if (p !=NULL) {
 printf(“%d”, p->data);
 preorder(p->left_child);
 preorder(p->right_child);

}
}

M P R Q T

M

P Q

 R T

Preorder Traversal: M P R S Q T

M

P Q

 R T

 S

Carry out in-order traversal of this tree

void inorder(struct tree_node *p)
{ if (p !=NULL) {
 inorder(p->left_child);
 printf(“%d\n”, p->data);
 inorder(p->right_child);

}
}
IN ORDER TRAVERSAL: R P M T Q

M

P Q

 R T

In ORDER TRAVERSAL : R P S M T Q

M

P Q

 R T

 S

Non Recursive implementation of preorder tree
traversal

In a preorder traversal, we visit the root node first, then we
visit its left subtree (all the nodes) and finally visit its right
subtree. How do we actually visit all the nodes of a
subtree? We can write a non-recursive algorithm by making
use of a stack. To start with we push the root node on the
stack. Then we push the right child and the left child of the
current node on a stack recursively. Then we pop them and
print them. Look at this implementation:

*p = root;
if (p != NULL)
{
 push(p);
 while (stack not empty)
 {
 p = pop stack;
 printf(“%d “,p->data);
 if (p->right_child != NULL)
 push (p-> right_child);
 if (p ->left_child != NULL)
 push (p -> left_child);
 }
}

 /* note the left child is pushed on top of right node, so that
it gets popped up first */

Non Recursive Preorder Traversal:

M

P Q

 R T

 S

Stack position Popped values
 M
 M
Q P
 Q M P
Q S R
Q S M P R
Q M P R S

 M P R S Q
T
- M P R S Q T

Expression Trees
Many compilers make use of trees, as they serve as ideal
representations for the hierarchical structure of a program.
Design of a compiler is a complex process, which you shall
learn in a later course. Let us look at one particular aspect
of compiler, which deals with evaluation of arithmetic
expressions. An arithmetic expression can be represented
as a binary tree. Such a tree is called an Expression Tree.
An expression tree is a binary tree representing an
arithmetic expression where the leaf nodes of the tree
represent the operands (variables or constants) and the
internal nodes and the root node represent the operators.

Constructing an Expression Tree

Constructing an expression tree involves two parts:
Lexical Analysis: Dividing the input into tokens, each of
which represents either integer constant, an operator or a
variable name.
Parsing: Determining if the individual tokens represent a
legal expression and finding out the structure of that
expression.
Generating an expression tree from an infix expression is
not very difficult if there is no ambiguity in the expression
and it is overly parenthesized.

Example :

 3 + 5 / 9 + 8 could mean

(3 + (5/9) + 8) or (3 + 5 / (9 +8))

There will be one distinct expression tree for each of the
interpretations depending on the parsing scheme.

In this section we consider building an expression tree
given the expression in its postfix form.

The construction starts with reading the postfix
expression one symbol at a time.

If the symbol is an operand , we create a one-node tree
and push it onto a stack.

If the symbol is an operator, we pop two trees T1 and
T2 from the stack (popping up T1 first), and form a
new tree with the operator as the root, T2 as the left
child and T1 as the right child.

The new tree is then pushed onto the stack.

As an example, let the input expression be

a b +
The first two symbols are operands. So we create one node
trees and push them onto a stack.

The next symbol is an operator +, so the two one node
trees are popped, and a new tree is formed. The first tree to
be popped is the one containing b, so this becomes the right
child of the operator, the second tree to be popped contains
the operand a , and this becomes the left child of the
operator.

a b

The expression tree is now constructed. It is obvious that he
evaluation of the expression is nothing but in-order
traversal to yield a + b.

Let us take a larger expression:

a b + c d e + * *

Let us say we have processed the first three tokens, and
have already reached the ‘+’ operator.

a b

+

 Next we read c, d, e and construct one node trees and push
them onto the stack.

Next is an operator ‘+’, so last two trees are popped out
and a new tree formed with this as root.

a b

+ c

d

e

Next symbol is another operator ‘*’, so again two trees are
popped from the stack and merged to form a new tree with
this operator at the root:

a b

+ c

d e

+ +

Finally the last operator ‘*’ causes the last two entries from
the stack to be pulled out , i.e. the tree containing ‘+’ at the
root and the tree containing ‘*’ at the root.
These are merged with the second ‘*’ operator as the root,
and the expression tree is complete, and now it is the only
entry in the stack.

a b

+

c +

+ *

d e

Let us now see how do we evaluate this tree.

int eval (struct tree_node *p)
{
 int lhs, rhs;
 char op;
 if (p -> left_child = NULL && (p->
right_child = NULL)
 return (p->data);
 else

lhs = eval(p ->left_child);
rhs = eval(p ->right_child);
op = p ->data;
switch (op) {
 case ‘+’: return (lhs+rhs);
 case ‘-’: return (lhs-rhs);
 case ‘*’: return (lhs*rhs);
 case ‘/’: return (lhs/rhs);

}

Binary Search Tree (BST)

We have seen earlier that if the values in nodes of a binary
tree are arranged in a specific order, with all elements
smaller than the root stored in left subtree and all elements
greater than the root stored as right subtree, it represents a
sorted list. The search complexity reduces considerably, as
the height of the tree is much less than total number of
elements. Of course, one has to keep in mind that the tree
has to be organized in a specific manner. Such a tree is
known as a Binary Search tree, because it permits us to
carry out a search similar to the Binary search method that
we have used on a sorted array.

 Let us first of all define a BST.

A Binary search tree (BST) is a binary tree that is

either empty , or

each node contains a data value satisfying the following:

a) all data values in the left subtree are smaller than the
data value in the root.

b) the data value in the root is smaller than all values in

its right subtree.

c) the left and right subtrees are also binary search tees.

Searching for a target

in the Binary Search Tree

The definition of a binary search tree allows us to quickly
search for a particular value in the BST. Check the given
value with the value in the root node. If it matches, return
1, else if given value is smaller , look into left subtree, else
look into right subtree. If subtree is null, return 0.

struct tree_node{
 int data;
 struct tree_node *left_child;
 struct tree_node *right_child;
};

int treeSearch(struct tree_node *p, int
target)
{ if (p!=NULL)
 {

 if (p->data == target)
 return 1;
 else if (p->data > target)
 treeSearch(p->left_child);
 else
 treeSearch(p->right_child);

 }
 return 0;

}

Example Tree:

Inserting a node in a BST

59

18 67

13 32 63 72

25

Insertion of a new node in a BST has to be done only at the
appropriate place for it, so that overall BST structure is still
maintained, i.e. the value at any node should be less than
that at right node and less than that at the left node.

Inserting a new node into a BST always occurs at a NULL
pointer.
 There is never a case when existing nodes need to be
rearranged to accommodate the new node.

 As an example, consider inserting the new value 43 into
the BST shown above. Where is the new node supposed to
go?

Hint: search for node containing 43. Obviously, you won’t
find it, but the search algorithm has taken you to the NULL
pointer where it should be placed, so this is the appropriate
place to insert it.

59

18 67

 43 should
 be here, so put it here!

Assume that a node “new” has been created containing the
data, and that both the left and right child fields have been
set to NULL. It is now desired to insert the node at its
proper place in an existing BST with root node p.

43

59

18 67

13 32 63 72

25

struct node* insert(struct tree_node *p, struct
tree_node *new)
{

 if (p == NULL)
 p = new;
 else
 if(p->data >new->data)
 p->left_child= insert(p->left_child, new);
 else
 p->right_child=insert(p->right_child, new);

 return p;
}

Traversing a Binary Search Tree

The above BST can be traversed starting with the root node
(Preorder traversal) to result in the sequence

59,18,13,32,25,43,67,63,72

However, an interesting feature is revealed with the Inorder
Traversal which yields

13, 18, 25, 32, 43, 59, 63, 67, 72

What do you notice? This is an ordered listing of the values
of BST nodes, with the left most node being the smallest
element and the right most node being the largest element.

Creating a Binary Search Tree

To create a binary search tree, keep on inserting the nodes
as and when they arrive. Note that the shape of the BST
will depend on the order of insertion of the nodes.
The above tree was created from the sequence

59, 18, 13, 67, 32, 72, 25, 63, 43

If the values arrived in the order
13, 18, 25, 32, 43, 59, 63, 67, 72

the BST would take the following shape

Notice that it is not a balanced tree, but skewed towards
right. In such a case, the search and insertion complexity
would be O(n) instead of O(log n). If the sequence were

13

18

25

 32

43

 59

63

67

 72

entered in descending order then it would result in a left-
skewed tree. For any other ordering of the sequence the
complexity would lie in between O(n) and O(log n).

Suppose we were interested in generating a balanced BST,
given any arbitrary sequence of values.
 We could this by first storing all the elements in an array
and sorting them in ascending order.

• Once sorted, the element at the midpoint of the array
will become the root of the BST. The array can now
be viewed as consisting of two subarrays, one to the
left of the midpoint and one to the right of the
midpoint.

• The middle element in the left subarray becomes the
left child of the root node and the middle element in
the right subarray becomes the right child of the root.

• This process continues with further subdivision of the
original array until all the elements in the array have
been positioned in the BST.

• Take care to completely generate the left subtree of
the root before generating the right subtree of the root.
If this is done, a simple recursive procedure can be
used to generate a balanced BST.

void balance(int sequence[], int
first, int last)
{

int mid;
 if (first <= last) {

 mid = (first + last)/2;
 insert_BST(data[mid]);
 balance(data, first, mid-1);
 balance(data, mid+1, last);
 }
}

where the function insert_BST creates a new node with the
value data[mid] and calls the ‘insert ‘ function to insert the
new node into the BST.

