

Sorting – 2

Mergesort

Quicksort

 Mergesort

The sorting algorithms that we have studied so far have a
quadratic complexity. In this section we shall look at two
sorting methods which are subquadratic , i.e. the
complexity is less than O(n2).The mergesort sorting
algorithm uses the divide and conquer strategy in which the
original problem is split into two problems, with size
about half the size of the original problem.

The basic idea is as follows. Suppose you have got a large
number of integers to sort. Write each integer on a separate
slip of paper. Make two piles of the slips. So the original
problem has been reduced to sorting individually two piles
of smaller size. Now reduce each pile to half of the existing
size. There would be now 4 piles with a smaller set of
integers to sort. Keep on increasing the number of piles by
reducing their lengths by half every time. Continue with the
process till you have got piles with maximum two slips in
each pile. Sort the slips with smaller number on the top.
Now take adjacent piles and sort them in the same manner.
So now the number of piles go on reducing but piles are
now sorted. Stop when all piles have been taken care of
and there remains one single pile.

Thus the mergesort can be thought of as a recursive
process:

mergesort

1. if the number of items to sort is 0 or 1, return.
2. recursively mergesort the first and second halves

separately.
3. merge the two sorted halves into a single sorted

group.

What would be the complexity of the process?
Since this algorithm uses the divide and conquer strategy
and employs the halving principle, we can guess that the
sorting process would have O(log2 n) complexity.
However, the merging operation would involve movement
of all the n elements (linear time), and we shall show
later that the overall complexity turns out to be O(N log2
N).

We can merge two input arrays A and B to result in a third
array C. Let the index counter for the respective arrays be
actr, bctr, and cctr. The index counters are initially set to
the position of the first element. The smaller of the two
elements A[actr] and B[bctr] is stored in C[cctr] as shown
below:
 if A[actr] < B[bctr]
 C[cctr] = A[actr];
 cctr++;
 actr++;
 } else {

 C[cctr] = B[bctr];
 cctr++;
 bctr++;
 }

Let us take an example. Say at some point in the sorting
process we have to merge two lists 1, 3, 4, 7 and2,5, 9, 11

We store the first set in Array A and the second set in
Array B. The merging goes in following fashion:

Example: Linear Merge

 A B C

actr bctr cctr

1 3 4 7 2 5 9 11

1 3 4 7 2 5 9 11 1

1 3 4 7 2 5 9 11 1 2

1 3 4 7 2 5 9 11 1 2 3

1 3 4 7 2 5 9 11 1 2 3 4

1 3 4 7 2 5 9 11 1 2 3 4 5

1 3 4 7 2 5 9 11 1 2 3 4 5 7

1 3 4 7 2 5 9 11 1 2 3 4 5 7 9

1 3 4 7 2 5 9 11 1 2 3 4 5 7 9 11

Let us now examine the overall mergesort process by
considering a specific example:

Example of a mergesort.

In fact, instead of using separate input arrays, we can as
well concatenate the two input arrays in array C , and use a
temporary array to carry out the operations. The two sub
arrays can be identified by means of the indexes for the
beginning and end of the subarrays.

The merging code now takes the following form:

merge (list[], first, last)
mid = (first + last) / 2 ;
ia = 0 ;
ib = first ;
ic = mid + 1 ;
while (ib < mid && ic < last)
 {
 if list[ib] < list [ic]
 temp [ia++] = list[ib++];
 else
 temp[ia++] = list[ic++];
 }
while (ib < mid)
 {
 temp [ia++] = list[ib++];
 }
while (ic < last)
 {
 temp[ia ++] = list[ic++];
 }
for(ia = 0; ia < last ; ia++)
 list[ia] = temp [ia];

With this background, we are now in a position to write
the pseudocode for mergesort.

mergesort (list, first, last)

if first < last
 mid = (first + last)/2 ;
mergesort (list, first, mid);
mergesort (list, mid+1 , last);
merge (list, first, last) ;

Computational Complexity:

Intuitively we can see that mergesort reduces the problem
to half its size every time, (done twice), it can be viewed as
creating a tree of calls, where each level of recursion is a
level in the tree. Effectively, all n elements are processed
by the merge routine the same number of times as there are
levels in the recursion tree. Since the number of elements is
divided in half each time, the tree is a balanced binary tee.
The height of such a tree tends to be log n.

The merge routine steps along the elements in both halves,
comparing the elements. For n elements, this operation
performs n assignments, using at most n – 1 comparisons,
and hence it is O(n). So we may conclude that [log n .
O(n)] time merges are performed by the algorithm.

The same conclusion can be drawn more formally using the
method of recurrence relations. Let us assume that n is a
power of 2, so that we always split into even halves. The
time to mergesort n numbers is equal to the time to do two

recursive mergesorts of size n/2, plus the time to merge,
which is linear.

For n = 1 , the time to mergesort is constant.

We can express all of it through following recurrence
relations:

T(1) = 1
T(n) = 2 T(n/2) + n

Using same logic and going further down

T(n/2) = 2 T(n/4) + n/2

Substituting for T(n/2) in the equation for T(n),we get

T(n) = 2[2 T(n/4) + n/2] + n

 = 4 T(n/4) + 2n

Again by rewriting T(n/4) in terms of T(n/8), we have

T(n) = 4 [2 T(n/8) + n/4] + 2n

 = 8 T(n/8) + 3 n

 = 23 T(n/ 23) + 3 n

The next substitution would lead us to

T(n) = 24 T(n/ 24) + 4 n

Continuing in this manner, we can write for any k,

T(n) = 2k T(n/ 2k) + k n

This should be valid for any value of k. Suppose we choose
k = log n, i.e. 2k = n. Then we get a very neat solution:

T(n) = n T(1) + n log n

 = n log n + n

Thus T(n) = O(n log n)

This analysis can be refined to handle cases when n is not
a power of 2. The answer turns out to be almost identical.

Although mergesort’s running time is very attractive, it is
hardly ever used for sorting data in main memory. The
main problem is that merging two sorted lists uses linear
extra memory, and the additional work spent copying to the
temporary array and back, throughout the algorithm, has
the effect of slowing down the sort considerably.

The copying can be avoided by judiciously switching the
roles of list and temp arrays at alternate levels of the
recursion. For serious internal sorting applications, the
algorithm of choice is Quicksort, which we shall be
studying next.

Quick-Sort

Quick-Sort

As the name implies the quicksort is the fastest known
sorting algorithm in practice. It has the best average time
performance. Like merge sort, Quicksort is also based on
the divide-and-conquer paradigm.
• But it uses this technique in a somewhat opposite

manner, as all the hard work is done before the recursive
calls.

• It works by partitioning an array into two parts, then
sorting the parts independently, and finally combining
the sorted subsequences by a simple concatenation.

In particular, the quick-sort algorithm consists of the
following three steps:

1. Choosing a pivot::.

To partition the list, we first choose some element from
the list which is expected to divide the list evenly in two
sublists. This element is called a pivot.

2. Partitioning:
Then we partition the elements so that all those with values
less than the pivot are placed in one sublist and all those
with greater values are placed in the other sublist.

3. Recur:
Recursively sort the sublists separately. Repeat the
partition process for both the sublists. Choose again two
pivots for the two sublists and make 4 sublists now. Keep
on partitioning till there are only one cell arrays that do not
need to be sorted at all. By dividing the task of sorting a
large array into two simpler tasks and then dividing those
tasks into even simpler task, it turns out that in the process
of getting prepared to sort , the data have already been
sorted. This is the core part of the quicksort.

Example:

56 25 37 58 95 19 73 30
 lh rh

1. Choose first element 56 as pivot.
2. Move rh index to left until it coincides with lh or

points to value smaller than pivot. Here it already
points to small value.

3. Move lh index to right until it coincides with rh or
points to value equal to or greater than pivot.

56 25 37 58 95 19 73 30
 lh rh

4. If lh and rh not pointing to same element , exchange

the elements.

56 25 37 30 95 19 73 58
 lh rh

5. Repeat steps 2 to 4 until lh and rh coincide.

56 25 37 30 95 19 73 58
 lh rh

56 25 37 30 95 19 73 58
 lh rh

56 25 37 30 19 95 73 58
 lh rh

56 25 37 30 19 95 73 58
 lh
 rh

6. This will be the smallest value. Exchange this with

the pivot..
19 25 37 30 56 95 73 58

7. This will result in two sub arrays, one to left of pivot
and one to right of pivot. Repeat steps 1 to 6.

19 25 37 30 56 95 73 58

The code for the quick sort function can take the following
form:
//Precondition:A valid integer type array with its
maximum size that has to be sorted using Quick sort
//Postcondition: Sorts the array corresponding to
items
void sorting(int values[] , int n)
{
 int mid;
 if(n < 2)
 return;

 mid= partitioning(values, n);
 sorting(values, mid);
 sorting(values+ mid+1 , n-mid-1);
 }

//Precondition: Called by sorting function with two
arrays - the item numbers in values array
//Postcondition: Retruns the partition element to
the sorting function after checking through the
arrays entered.
int partitioning(int values[],int n)
{
 int pivot,left,right,temp;
 pivot= values[0];
 left=1 ;
 right= n-1;

 while(1)
 {
 while(left<right && values[right]>= pivot)
 right--;
 while(left<right && values[left]< pivot)
 left++;
 if(left == right)
 break;
 temp= values[left];
 values[left]= values[right];
 values[right]=temp;

 }

Picking the Pivot:

The algorithm would work, no matter which element is
chosen as a pivot. However, some choices are going to be
obviously better than the other ones. A popular choice
would be to use the first element as a pivot. This may work
if the input is random.

But, if the list is presorted or in reverse order, then what
would be the result of choosing such a pivot? This may
consistently happen throughout the recursive calls and turn
the whole process into a quadratic time algorithm.

If the data is presorted, the first element is not chosen as the
pivot element. A good strategy would be to take the first
value and swap it with the center value, and then choose the
first value as a pivot. A better strategy is to take the median
of the first, last and the center elements. This works pretty
well in many cases.

Analysis of Quicksort:

To do the analysis let us use the recurrence type relation
used for analyzing mergesort. We can drop the steps
involved in finding the pivot as it involves only constant
time.
We can take T(0) = T(1) = 1.

The running time of quicksort is equal to the running time
of the two recursive calls, plus the linear time spent in the
partition. This gives the basic quicksort relation

T(N) the time for Quicksort on array of N elements, can be
given by

T(N) = T(j) + T(N – j – 1) + N,

Where j is the number of elements in the first sublist.

Worst Case Analysis:

 The partitions are very lopsided, meaning that either left

partition |L| = 0 or N – 1 or right partition |R| = N –
1 or 0, at each recursive step. Suppose that Left
contains no elements, Right contains all of the
elements except the pivot element (this means that

the pivot element is always chosen to be the smallest
element in the partition),

1 time unit is required to sort 0 or 1 elements, and N time

units are required to partition a set containing N
elements.

Then if N > 1 we have:

 T(N) = T(N-1) + N

 This means that the time required to quicksort N

elements is equal to the time required to recursively
sort the N-1 elements in the Right subset plus the
time required to partition the N elements. By
telescoping the above equation we have:

T(N) = T(N-1) + N

T(N-1) = T(N-2) + (N-1)

T(N-2) = T(N-3) + (N-2)

 …..
 …..

 T(2) = T(1) + 2

 T(N) = T(1) + 2 + 3 + 4 + … + N

 = N(N+1)/2

= O(N2)

 Therefore, you never want to select a pivot element

that leads to an unbalanced paritioning.

Best case analysis:
The best case analysis assumes that the pivot is always in

the middle. To simplify the math, we assume that the
two sublists are each exactly half the size of the
original. Then we can follow the same analysis as in
merge sort and can show that

T(N) = O(N log N)

Average Case analysis:

 If each partition is equally likely to contain 0, 1, 2, …, N-1

elements, then the average running time of the
quicksort algorithm is O(N log2 N). More formally
this is stated as:

 T(Left)average = T(Right)average = [T(0) + T(1) + T(2) +

… + T(N-1)]/N

 T(N)average = T(Left)average + T(Right)average + N

 = 2[T(Left)average] + N

 = 2[[T(0) + T(1) + T(2) + … + T(N-1)]/N] +

N

 with manipulation you arrive at:

 T(N)/(N+1) = T(N-1)/N + 2/(N+1)

Telescoping yields

 T(N)/(N+1) = 2[1 + ½ + 1/3 + …+1/(N+1)) – 5/2 which is
O(log2 N).
 Therefore, multiplying both side by N+1 gives: T(N)

= O(N log2 N)

