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  Mergesort 
 
 
 
The sorting algorithms that we have studied so far have a 
quadratic complexity. In this section we shall look at two 
sorting methods which are subquadratic , i.e. the 
complexity is less than O(n2 ).The mergesort sorting 
algorithm uses the divide and conquer strategy in which the 
original problem is split into two  problems, with size  
about  half the size of the original problem.   
 
The basic idea is as follows. Suppose you have got a large 
number of integers to sort. Write each integer on a separate 
slip of paper. Make two piles of the slips. So the original 
problem has been reduced to sorting individually two piles 
of smaller size. Now reduce each pile to half of the existing 
size. There would be now 4 piles with a smaller set of 
integers to sort.  Keep on increasing the number of piles by 
reducing their lengths by half every time. Continue with the 
process till you have got piles with  maximum two slips in 
each pile. Sort the slips with smaller number on the top. 
Now take adjacent piles and sort them in the same manner. 
So now the number of piles go on reducing but piles  are 
now sorted.  Stop when all piles have been taken care of 
and there remains one single pile.  
 
 



Thus  the mergesort can be thought of as a recursive 
process: 
 
mergesort 

1. if the number of items to sort is 0 or 1, return. 
2. recursively mergesort the first and second halves 

separately. 
3. merge the two sorted halves into a single sorted 

group. 
 

What would be the complexity of the process? 
Since this algorithm uses the divide and conquer strategy 
and employs the halving principle, we  can guess that the 
sorting process would have  O(log2 n) complexity. 
However, the merging operation  would involve movement 
of  all the   n elements  (linear time ), and we shall show 
later that the overall complexity turns out to be O(N log2 
N). 
 
 
We can merge two input arrays A and B to result in a third 
array C. Let the  index counter for the respective  arrays be 
actr, bctr, and cctr.  The index counters are initially set to 
the position of the first element. The smaller of the two 
elements A[actr] and B[bctr] is stored in C[cctr] as shown 
below: 
 if A[actr] < B[bctr] 
  C[cctr] = A[actr]; 
  cctr++; 
  actr++; 
 } else  { 



  C[cctr] = B[bctr]; 
  cctr++; 
  bctr++; 
 } 
 
 
 
 
Let  us take an example.  Say at some point in the sorting 
process we have to merge two lists 1, 3, 4, 7  and2,5, 9,  11  
 
We  store the first set in Array A and the second set in 
Array B. The merging goes in  following fashion: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example: Linear Merge 
 
 A   B      C 
 
 
 
 
actr      bctr    cctr 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1     3     4   7  2   5  9  11 

1     3    4     7 2   5   9  11 1 

1     3    4     7 2   5    9  11 1      2 

1     3    4     7 2   5    9  11 1      2      3 

1     3    4     7 2   5    9  11 1       2     3    4 

1     3       4   7 2   5    9  11 1          2    3    4    5 

1     3    4     7 2     5  9  11 1      2       3    4      5     7 

1       3    4   7 2    5   9  11 1      2     3        4     5     7      9 

1     3      4   7 2   5   9  11 1       2     3     4     5      7         9     11 



Let us now examine the overall mergesort process by 
considering a specific example: 
 
 
 
 
Example of a mergesort. 
 
 
 
In fact, instead of using  separate input arrays, we can as 
well concatenate the two input arrays in array C , and use a 
temporary array to carry out the operations.  The two sub  
arrays can be identified by means of the indexes for the 
beginning and end of the subarrays.  
 
The merging code now takes the following form:  



 
merge ( list[], first, last)  
mid = ( first +  last ) / 2 ;  
ia = 0 ;  
ib = first ;  
ic = mid + 1 ;  
while ( ib < mid && ic < last )  
   { 
      if list[ib] < list [ic ]  
          temp [ia++] = list[ib++];  
      else  
          temp[ia++] = list[ic++];  
    } 
while ( ib < mid )  
      { 
        temp [ia++] = list[ib++]; 
  } 
while ( ic < last ) 
 { 
  temp[ia ++] = list[ic++];  
    }  
for( ia = 0; ia < last ; ia++)  
    list[ia] = temp [ia]; 
 
 
 
 
 
With this background, we are now in  a position to write 
the pseudocode for mergesort. 
 
mergesort ( list, first, last)  



if first < last  
   mid = (first + last)/2 ;  
mergesort ( list, first, mid);  
mergesort ( list, mid+1 , last );  
merge ( list, first, last) ; 
 
 
 
 

Computational Complexity: 
 
Intuitively we can see that mergesort reduces the problem 
to half its size every time, (done twice), it can be viewed as 
creating a tree of calls, where each level of recursion is a 
level in the tree.  Effectively, all n elements are processed 
by the merge routine the same number of times as there are 
levels in the recursion tree. Since the number of elements is 
divided in half each time, the tree is a balanced binary tee.  
The height of  such a tree tends to be  log n. 
 
The merge routine steps along the elements in both halves, 
comparing the elements. For n elements, this operation 
performs n assignments, using at most n – 1 comparisons, 
and hence it is O(n). So we may conclude that  [ log n . 
O(n) ] time merges are performed by the algorithm. 
 
The same conclusion can be drawn more formally using the 
method of recurrence relations. Let us assume that n is a 
power of 2, so that we always split into even halves. The 
time to mergesort  n numbers is equal to the time to do two 



recursive mergesorts of size n/2, plus the time to merge, 
which is linear.  
 
For n = 1 , the time to mergesort is constant. 
 
We can express all of it through following recurrence 
relations: 
 
T(1) = 1 
T(n) = 2 T(n/2) + n 
 
Using same logic and going further down 
 
T(n/2) = 2 T(n/4) + n/2 
 
Substituting for T(n/2) in the  equation for T(n),we get 
 
T(n) = 2[ 2 T(n/4) + n/2 ] + n 
 
 = 4 T(n/4) + 2n 
 
Again by rewriting T(n/4) in terms of T(n/8), we have 
 
T(n) = 4 [ 2 T(n/8)  + n/4 ] + 2n 
 
 = 8 T(n/8) + 3 n 
 
 =  23  T( n/ 23  ) + 3 n  
 
 
The next substitution would lead us to 



 
T(n) =  24  T(n/ 24 ) + 4 n 
 
Continuing in this manner, we can write for any  k, 
 
T(n) =  2k  T(n/ 2k ) + k n 
 
This should be valid for any value of k. Suppose we choose  
k = log n, i.e.  2k  =  n. Then we get a very neat solution: 
 
T(n) =  n T(1) + n log n 
 
 = n log n + n 
 
Thus T(n) = O( n  log n) 
 
This analysis  can be refined to handle cases when  n is not 
a power of 2. The answer turns out to be almost identical. 
 
Although mergesort’s running time is very attractive, it is 
hardly ever used for sorting data in main memory. The 
main problem is that merging two sorted lists uses linear 
extra memory, and the additional work spent copying to the 
temporary array and back, throughout the algorithm, has 
the effect of slowing down the sort considerably.  
 
The copying can be avoided by judiciously switching the 
roles of   list  and temp arrays at alternate levels of the 
recursion. For serious internal sorting applications, the 
algorithm of choice is Quicksort, which we shall be 
studying next. 



 
 
 
 
 
 
 
 
 
 

Quick-Sort 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Quick-Sort 
 

 
As the name implies the quicksort is the fastest known 
sorting algorithm in practice. It has the best average time 
performance. Like merge sort, Quicksort is also based on 
the divide-and-conquer paradigm. 
• But it uses this technique in a somewhat opposite 

manner, as all the hard work is done before the recursive 
calls. 

• It works by partitioning an array into two parts, then 
sorting the parts independently, and finally combining 
the sorted subsequences by a simple concatenation. 

 
In particular, the quick-sort algorithm consists of the 
following three steps: 
 
1. Choosing a pivot::. 

To partition the list, we first choose some element from 
the list  which is expected to divide the list evenly in two 
sublists. This element is called a  pivot.  
 

2. Partitioning: 
Then we partition the elements so that all those with values 
less than the pivot are placed in one sublist and all those 
with greater values are placed in the other sublist.  
 



3. Recur:  
Recursively sort the sublists separately.  Repeat the 
partition process for  both the sublists. Choose again two 
pivots for the two sublists and make 4 sublists now. Keep 
on partitioning till there are only one cell arrays that do not 
need to be sorted at all. By dividing the task of sorting a 
large array into two simpler tasks and then dividing those 
tasks into even simpler task, it turns out that in the process 
of getting prepared to sort , the data have already been 
sorted. This is the core part of the quicksort. 
 
 
Example: 
 
56 25 37 58 95 19 73 30 
 lh      rh 
 

1. Choose first element 56 as pivot. 
2. Move rh index to left until it coincides with lh or 

points to value smaller than pivot. Here it already 
points to small value. 

3. Move lh index to right until it coincides with rh or 
points to value equal to or greater than pivot. 

 
56 25 37 58 95 19 73 30 
   lh    rh 

 
 
4. If lh and rh not pointing to same element , exchange 

the elements. 
 



 
56 25 37 30 95 19 73 58 
   lh    rh 
 

 
5. Repeat steps 2 to 4 until lh and rh coincide. 
 

56 25 37 30 95 19 73 58 
   lh  rh 

 
56 25 37 30 95 19 73 58 
           lh rh 
 
56 25 37 30 19 95 73 58 
           lh rh 

 
56 25 37 30 19 95 73 58 
           lh 
    rh 
 

 
6. This will be the smallest value. Exchange this with 

the pivot.. 
19 25 37 30 56 95 73 58 
            

7. This will result in two sub arrays, one to left of pivot 
and one to right of pivot. Repeat steps 1 to 6. 

 
19 25 37 30 56 95 73 58 
 



The code for the  quick sort function can take the following 
form: 
//Precondition:A valid integer type array with its 
maximum size that has to be sorted using Quick sort 
//Postcondition: Sorts the array corresponding to 
items 
void sorting(int values[] , int n) 
{ 
        int mid; 
        if(n < 2 ) 
        return; 
 
        mid= partitioning( values,  n); 
        sorting(values,   mid); 
        sorting(values+ mid+1 ,   n-mid-1); 
  } 
 
 
//Precondition: Called by sorting function with two 
arrays - the item numbers in values array  
//Postcondition: Retruns the partition element to 
the sorting function after checking through the 
arrays entered. 
int partitioning( int values[],int n) 
{ 
        int  pivot,left,right,temp; 
        pivot= values[0]; 
        left=1 ; 
        right= n-1; 
 
        while(1) 
          { 
       while(left<right && values[right]>= pivot) 
       right--; 
       while(left<right && values[left]< pivot) 
                left++; 
                if( left == right) 
                break; 
                temp= values[left]; 
                values[left]= values[right]; 
                values[right]=temp; 
 
        } 
 



 
Picking the Pivot:   
 
The algorithm would work, no matter which element is 
chosen as a pivot. However, some choices are going to be 
obviously better than the other ones. A popular choice 
would be to use the first element as a pivot. This may work 
if the input is random.  
 
But, if the list is presorted or in reverse order, then what 
would be the result of choosing such a pivot? This may 
consistently happen throughout the recursive calls and turn 
the whole process into a quadratic time algorithm.   
 
If the data is presorted, the first element is not chosen as the 
pivot element. A good strategy would be to take the first 
value and swap it with the center value, and then choose the 
first value as a pivot. A better strategy is to take the median 
of the first, last and the center elements. This works pretty 
well in many cases. 
 
 
 
 
 
 
 
 
 



 
Analysis of Quicksort: 
 
To do the analysis let us use the recurrence type relation 
used for analyzing mergesort.  We can drop the steps 
involved in  finding the pivot as it involves only constant 
time. 
We can take T(0) = T(1) = 1.  
 
The running time of quicksort is equal to the running time 
of the two recursive calls, plus the linear time spent in the  
partition. This gives the basic quicksort relation 
 
 
T(N)  the time for Quicksort on array of N elements, can be 
given by  
 
T(N)  = T(j ) + T( N – j – 1 )  + N, 
 
Where  j is the number of elements in the first sublist. 
  
 
 
Worst Case Analysis:  
 
 The partitions are very lopsided,   meaning that either left 

partition |L| = 0 or N – 1  or right partition  |R| = N – 
1  or  0, at each  recursive step. Suppose that Left 
contains no elements, Right contains all of the 
elements except the pivot element (this means that 



the pivot element is always chosen to be the smallest 
element in the partition),  

 
1 time unit is required to sort 0 or 1 elements, and N time 

units are required to partition a set containing N 
elements.   

 
Then if N > 1 we have: 
  
  T(N) = T(N-1) + N 
 
 This means that the time required to quicksort N 

elements is equal to   the time required to recursively 
sort the N-1 elements in the Right subset   plus the 
time required to partition the N elements.  By 
telescoping the above equation  we have: 

  
T(N) = T(N-1) + N 
  
T(N-1) = T(N-2) + (N-1) 
 
T(N-2) = T(N-3) + (N-2) 
 
   ….. 
  ….. 
 
      T(2) = T(1) + 2 
 
  T(N) = T(1) + 2 + 3 + 4 + … + N  
 
                         = N(N+1)/2  



 
= O(N2) 

 
 Therefore, you never want to select a pivot element 

that leads to an unbalanced paritioning. 
 
Best case analysis: 
The best case analysis assumes that the pivot is always in 

the middle. To simplify the math, we assume that the 
two sublists are each exactly half the size of the 
original. Then we can follow the same analysis as in 
merge sort and can show that  

 
T(N) = O( N log N ) 
 
Average Case analysis:  
 
 If each partition is equally likely to contain 0, 1, 2, …, N-1 

elements, then the average running time of the 
quicksort algorithm is O(N log2 N).  More formally 
this is stated as: 

 
 T(Left)average = T(Right)average = [T(0) + T(1) + T(2) + 

… + T(N-1)]/N 
 
 T(N)average = T(Left)average + T(Right)average + N 
 
   = 2[T(Left)average] + N 
   
   = 2[[T(0) + T(1) + T(2) + … + T(N-1)]/N] + 

N 



 
 with manipulation you arrive at: 
 
 T(N)/(N+1) = T(N-1)/N + 2/(N+1) 
 
Telescoping yields 
 
 T(N)/(N+1) = 2[1 + ½ + 1/3 + …+1/(N+1)) – 5/2  which is 
O(log2 N).  
 Therefore, multiplying both side by N+1 gives:  T(N) 

= O(N log2 N) 
 
 
    
 
 
 


