

Sorting

Insertion sort
Selection sort
Bubble sort

The efficiency of handling data can be substantially
improved if the data are sorted according to some criteria of
order. In a telephone directory we are able to locate a phone
number, only because the names are alphabetically ordered.
Same thing holds true for listing of directories created by
us on the computer. It would be very annoying if we don’t
follow some order to store book indexes, payrolls, bank
accounts, customer records, items inventory records,
especially when the number of records is pretty large.

• We want to keep information in a sensible order.
− alphabetical order
− ascending/descending order
− order according to names, ids, years, departments etc.

• The aim of sorting algorithms is to put unordered

information in an ordered form.

• There are dozens of sorting algorithms. The more
popular ones are listed below:
− Selection Sort
− Bubble Sort
− Insertion Sort
− Merge Sort
− Quick Sort

As always, we want to decide which algorithms are best for
a particular situation. The efficiency is decided by the
number of comparisons and the number of data
movements, using the big-O notation. The order of

magnitude can vary depending on the initial ordering of
data.

How much time, does a computer spend on data ordering if
the data are already ordered? We often try to compute the
data movements, and comparisons for the following three
cases:

best case (often, data is already in order),
worst case(sometimes, the data is in reverse order),
and average case(data in random order).

Some sorting methods perform the same operations
regardless of the initial ordering of data. Why should we
consider both comparisons and data movements?
If simple keys are compared, such as integers or
characters, then the comparisons are relatively fast and
inexpensive. If strings or arrays of numbers are compared,
then the cost of comparisons goes up substantially.
If on the other hand, the data items moved are large, such
as structures, then the movement measure may stand out as
the determining factor in efficiency considerations.

Insertion Sort

The key idea is to pick up a data element and insert it into
its proper place in the partial data considered so far. An
outline of the algorithm is as follows:

Let the n data elements be stored in a array list[]. Then,

 for (cur = 1; cur < n ; cur++)

 move all elements list [j] greater than data [cur] by
one position;

place data [cur] in its proper position.

Note that the sorting is restricted only to fraction of the
array in each iteraion.

The list is divided into two parts: sorted and unsorted.

 In each pass, the first element of the unsorted part is
picked up, transferred to the sorted sublist, and inserted
at the appropriate place. A list of n elements will take at
most n-1 passes to sort the data.

 Insertion Sort Example

Sorted Unsorted

23 78 45 8 32 56

23 78 45 8 32 56

23 45 78 8 32 56

8 23 45 78 32 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

Insertion Sort Algorithm

/* With each pass, first element in unsorted
 sublist is inserted into sorted sublist.

*/

void insertionSort(int list[], int n)
{
 int cur, located, temp, j;

 for (cur = 1; cur <= n ; cur++){
 located = 0;
 temp = list[cur];
 for (j = cur - 1; j >= 0 && !located;)
 if(temp < list[j]){
 list[j + 1]= list[j];
 j--;
 }
 else
 located = 1;
 list[j + 1] = temp;
 }
 return;
}

An advantage of this method is that it sorts the array only
when it is really necessary.

If the array is already in order, no moves are performed.
 However, it overlooks the fact that the elements may
already be in their proper positions . When an item is to be
inserted, all elements greater than this have to be moved.
There may be large number of redundant moves, as an
element (properly located) may be moved , but later
brought back to its position.

The best case is when the data are already in order.
Only one comparison is made for each position,
so the comparison complexity is O(n),
 and the data movement is 2n – 1 , i.e. it is O(n).

The worst case is when the data are in reverse order.
Each data element is to be moved to new position and for
that each of the other elements have to be shifted. This
works out to be complexity of O(n2).

What happens when the elements are in random order?
Does the over complexity is nearer to the best case , or
nearer to the worst case? It turns out that both number of
comparisons and movements turn out to be closer to the
worst case .

Selection Sort

Selection sort is an attempt to localize the exchanges of
array elements by finding a misplaced element first and
putting it in its final place.

 The list is divided into two sublists, sorted and unsorted,
which are divided by an imaginary wall.

 We select the smallest element from the unsorted sublist
and swap it with the element at the beginning of the
unsorted data.

 Then the smallest value among the remaining elements
is selected and put in the second position and so on.

 After each selection and swapping, the imaginary wall
between the two sublists move one element ahead,
increasing the number of sorted elements and decreasing
the number of unsorted ones.

 Each time we move one element from the unsorted
sublist to the sorted sublist, we say that we have
completed a sort pass.

 A list of n elements requires n-1 passes to completely
rearrange the data.

Selection Sort Example

Sorted Unsorted

23 78 45 8 32 56

8 78 45 23 32 56

8 23 45 78 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

Selection Sort Algorithm

/* Sorts by selecting smallest element in
unsorted
 portion of array and exchanging it with
element
 at the beginning of the unsorted list.
*/

void selectionSort(int list[], int n)
{
 int cur, j, smallest, tempData;

 for (cur = 0; cur <= n; cur ++){
 smallest = cur;

 for (j = cur +1; j <= n ; j++)
 if(list[j] < list[smallest])
 smallest = j ;

 // Smallest selected; swap with current
element

tempData = list[cur];
 list[cur] = list[smallest];
 list[smallest] = tempData;
 }
}

The outer loop is executed n times, and the inner loop iterates
j = (n –1 – cur) times.

So it is a n times summation of j. Thus the order turns out to be O(n 2).

The number of comparisons remain the same in all cases.

There may be some saving in terms of data movements (swappings).

Bubble Sort

Imagine all elements are objects of various sizes and are
placed in a vertical column. If the objects are allowed to
float, then the smallest element will bubble its way to the
top. This is how the algorithm gets its name.

 The list scanned from the bottom up, and two adjacent
elements are interchanged if they are found to be out of
order with respect to each other.

 Then next pair of adjacent elements are considered and
so on.

 Thus the smallest element is bubbled from the unsorted
list to the top of the array.

 After that, the wall moves one element ahead, increasing
the number of sorted elements and decreasing the
number of unsorted ones.

 Each time an element moves from the unsorted part to
the sorted part one sort pass is completed.

 Given a list of n elements, bubble sort requires up to n-1
passes to sort the data.

 Bubble sort was originally written to “bubble up” the
highest element in the list. From an efficiency point of

view it makes no difference whether the high element is
bubbled or the low element is bubbled.

Bubble Sort Example

Trace of 1st pass of Bubble Sort Example:

23 78 45 8 32 56

23 78 45 8 32 56

23 78 45 8 32 56

23 78 8 45 32 56

23 8 78 45 32 56

8 23 78 45 32 56

Sorted Unsorted

23 78 45 8 32 56

8 23 78 45 32 56

8 23 32 78 45 56

8 23 32 45 78 56

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4
Sorted!

Bubble Sort Algorithm

/* Sorts list using bubble sort. Adjacent
elements
 are compared and exchanged until list is
 completely ordered.

*/
void bubbleSort(int list[], int n)
{
 int cur, j, temp;
 for (cur = 0; cur <= n; cur++){
 for (j = n; j > cur; j--)
 if(list[j] < list[j - 1]){
 temp = list[j];
 list[j] = list[j – 1];
 list[j -1] = temp;
 }
 }
 return;
}

What is the time complexity of the Bubble sort algorithm?

The number of comparisons for the worst case (when the
array is in the reverse order sorted) equals the number of
iterations for the inner loop ,i.e. O(n 2). How many
comparisons are to be made for the best case? Well, it turns
out that the number of comparisons remain the same.

What about the number of swaps? In the worst case, the
number of movements is 3 n(n – 1)/2. In the best case,
when all elements are ordered, no swaps are necessary.
If it is a randomly ordered array, then number of
movements are around half of the worst case figure.

Compare it with insertion sort. Here each element has to be
bubbled one step at a time. It does not go directly to its
proper place as in insertion sort. It could be said that
insertion sort is twice as fast as the bubble sort , for the
average case., because bubble sort makes approximately
twice as many comparisons .

In summary, we can say that bubble sort, insertion sort and
selection sort are not very efficient methods, as the
complexity is O(n 2).

