
Review of pointers in functions

A pointer is a data item whose value is the address in the
memory of some other value.
Pointers allow us to refer to a large data structure in a
compact way. No matter how large the data structure
grows, it will reside somewhere in the computer’s memory
and therefore would have an address.

We can use the address as a short hand for the complete
value. All we need to store is an integer, irrespective of the
size of the structure. So we may talk about a complete list
with 5 nodes or 100 nodes with just one address.

Pointers facilitate sharing data between different parts of
the program. When we pass the address of some data value
from one function to another, both functions have access to
the same data.

Pointers make it possible to reserve new memory during
program execution (Dynamic allocation).

We have already seen that pointers can also be used to
record relationship among data items (such as nodes in a
linked list).
Suppose we want to point to an address where we have
kept 45.

*p=45;

means that the object pointed to by p is assigned the value
45.

Now consider

q = &y;

Here q is assigned the address of object y. So q points to
object y.

In the following statement r is assigned the value of the
object pointed to by q.

r= *q;

Basically this means that r and q are equivalent and
referring to the same object.

The addresses of variables can be used as arguments to
functions (call-by- reference).
Instead of ordinary variables , now we can use pointers to
form the parameter list in the functions definition.

235

a

n

M

x 3.145

char a;

int n;

float x;

p

q

r

char *p;

int *q;

float *r;

A good example is to carry out swapping of values of
two variables through a function call.

int main()
{
 int x=45,y=92;
 swap(&x, &y);
 return 0;
}

/* note that the main program passes on the addresses of
the variables x and y*/

void swap(int *p, int *q)
 {
 int temp;
 temp=*p;
 *p=*q;
 *q=temp;
}

The function swap is receiving the objects pointed by the
addresses p and q. Here instead of the variables we are
passing the pointers to the two variables.

The called function has full control on those variables and
can manipulate them, so that when main function looks at
them after function call, it would find them changed.

Function returning pointers

int *smaller (int *num1, int
*num2);
int main ()
{ int a;
 int b;
 int *p;
 scanf (“%d %d”, &a, &b);
 p = smaller (&a, &b);
}

The main program passes addresses of integers a
and b.
The function returns a pointer to address holding the
smaller of the two elements.

int *smaller (int *px, int *py)
{
 return (*px < *py ? px : py);
}

DOUBLE POINTERS
(pointer to a pointer)

int a;
int *p;
int **q; // pointer to p

a = 69;
p = &a;
q = &p;

printf(“ %3d %3d %3d”, a, *p, **q);

 // here *q is de-referenced as p

q p a

234560 297641 69

398780 234560 297641

Useful Programming tips

When several values need to be returned to the calling
function, use address parameters for all of them.

 Do not return one value and use address parameters for
the others.

Use the return for some other purpose, such as a status
flag, or make the return void.

Create local variables when a value parameter will be
changed within a function so that the original value will
always be available for processing.

Florida Lottery System

The Problem

The system automatically creates a file that contains the
name of each ticket purchaser along with the combination
of 6 distinct numbers picked by that person from the set
{1,2,3,...,52,53}.

The payout for matching a certain number of values:

Numbers Matched Winnings
3 $10
4 $100
5 $10000
6 $1000000

The program will ask the user for an input file with the data
for the ticket purchases.

Then it will ask the user for the winning combination of
numbers.

 The user must enter these numbers in ascending order.

Input File Format

The first line will contain n, the total number of tickets
bought.

The next 2n lines will contain information about each ticket
bought.
The information for a single ticket will be on two lines.

 The first of the two lines will contain the last name of the
ticket buyer, followed by the first name.

 The following line will contain the six integers chosen by
that buyer

Here is a sample file, input.txt:

5
Dorr Robin
1 15 19 26 33 46
Mong Drian
17 19 33 34 46 47
Pate David
1 4 9 16 25 36
Bayer Lisa
17 19 34 46 47 48
Gupta Alok
5 10 17 19 34 47

#include<stdio.h>

typedef struct
{
 char first[20];
 char last[20];
 int nos[6];
}gambler;

gambler *read_file(char file[], int *numbuyers);
void print_winners(gambler *list, nt numtickets);
void match_one (gambler buyer , int win_nos[]);

int main()
{
 char filename[20];
 int numbuyers,win_nos[6];
 gambler *ticket_buyers;

 // reads the filename containing buyer information.
 printf("\nEnter the name of the file with the ticket
data \n");
 scanf("%s",filename);

 // reads file information into memory and prints the
winning numbers.

 ticket_buyers=read_file(filename,
&numbuyers);

 print_winners(ticket_buyers,
numbuyers);

 // free memory space used.
 free (ticket_buyers);
 return 0;
}

//Preconditions: file should be name of file storing the
ticket buyer
//information in proper format.
//Postconditions: Returns a Pointer to the array storing all
ticket buyer
//information and total number of ticket buyers.

gambler *read_file (char file[], int
*numbuyers)
{
 FILE *fp;
 int i, j;

 gambler *list ;

 fp = fopen(file, "r");
 fscanf(fp, "%d", numbuyers);

 list = (gambler*) malloc((*numbuyers)
*sizeof(gambler));

 // read in individual ticket buyer information

 for (i=0; i<*numbuyers; i++)
 {
 //read in first and last name
 fscanf(fp, "%s" , list[i].last);
 fscanf(fp, "%s", list[i].first);

 //read in his choice of winning numbers

 for(j = 0; j<6; j++)
 fscanf(fp, "%d", &(list[i].nos[j]));
 }

 fclose(fp);
 return list;

}

// FUNCTION LOOKS AT LIST AND GETS
WINNING NUMBERS FROM USER//

//Precondition: list points to a valid list of gamblers of
length numtickets.

//Postcondition: Will scan the complete file , read in the
winning numbers and call the function to match with
individual ticket information.

void print_winners(gambler *list, int numtickets)
{
 int i, k , win_nos[6];

 //get the winning lottery numbers from the user

 printf("\nEnter the winning lottery nos :\n ");
 for(i=0 ;i<6 ;i++)
 scanf("%d",&win_nos[i]);

 //for each ticket buyer , match the numbers with the
winning numbers.
 for (k = 0; k< numtickets; k++)
 match_one(list [k] , win_nos);
}

// FUNCTION TO MATCH DATA
//Precondition: buyer is a valid struct.
//Postcondition: If 3 or more numbers match , then print
ticket buyer's name with winning amount.

void match_one (gambler buyer , int win_nos[])
{
 int i=0 , j=0, count=0;

 // Instead of matching all the winning numbers with
individual number read from the file,we check only upto
next higher number When numbers match we look for
another match by moving down the list.

 while(i<6 && j<6)

 {
 if(win_nos[i] < buyer.nos[j])
 i++;
 else if (win_nos[i] > buyer.nos[j])
 j++;
 else
 {
 count++;
 i++;
 j++;
 }
 }

//Depending on number matched print out the result
 switch(count)
 {
case 3:
 printf("\n%s %s matched 3 numbers and won
$10.\n",
 buyer.first, buyer.last);
 break;

case 4:
 printf("\n%s %s matched 4 numbers and won
$100.\n",
 buyer.first, buyer.last);
 break;
case 5:
 printf("\n%s %s matched 5 numbers and won
$10000.\n",
 buyer.first, buyer.last);

 break;

case 6:
 printf("\n%s %s matched 6 numbers and won
$1000000.\n",
 buyer.first, buyer.last);
 break;

